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1. Introduction

The holographic theory on M2-branes is given by an N = 8 supersymmetric theory with

eight scalars, eight fermions and sixteen supercharges. The AdS4 × S7 background yields

the holographic dual of a strongly coupled superconformal fixed point [1, 2]. By lifting

the renormalization group(RG) flow in four dimensions [3, 4] to eleven dimensions, the

M-theory solutions [5] which are holographic duals of flows of the maximally supersym-

metric theory in three dimensions are examined. Giving one of four complex superfields a

mass leads to an N = 2 supersymmetric flow(four supersymmetries) to a new supercon-

formal fixed point. The vacuum expectation values of remaining three complex superfields

parametrize the Coulomb branch at this fixed point. A M2-brane probe analysis of the

supergravity solution shows a three complex-dimensional space of moduli for the brane

probe [6]. However, the microscopic configuration of coincident M2-branes was still lacking.

Recently, Bagger and Lambert(BL) have proposed a Lagrangian to describe the low

energy dynamics of coincident M2-branes in [7]. See also relevant papers [8 – 11]. This BL

theory is three dimensional N = 8 supersymmetric field theory with SO(8) global symme-

try based on new algebraic structure, 3-algebra. In particular, 3-algebra with Lorentzian

signature was proposed by [12 – 14]. The generators of the 3-algebra are the generators of

an arbitrary semisimple Lie algebra plus two additional null generators. This theory with

gauge group SU(N) is a good candidate for the theory of N coincident M2-branes. We list

some relevant works on the BL theory, from various different point of views, in [15]–[47].

In this paper, starting from the first order differential equations, that are the supersym-

metric flow solution in four dimensional N = 8 gauged supergravity interpolating between

an exterior AdS4 region with maximal supersymmetry and an interior AdS4 with one quar-

ter of the maximal supersymmetry, we want to interpret this as the RG flow in N = 8

– 1 –



J
H
E
P
0
8
(
2
0
0
8
)
0
8
3

BL theory which has OSp(8|4) symmetry broken to an N = 2 theory which has OSp(2|4)
symmetry by the addition of a mass term for one of the four adjoint chiral superfields. A

precise correspondence is obtained between fields of bulk supergravity in the AdS4 region

and composite operators of the IR field theory in three dimensions.1 Since the Lagrangian

is known, one can check how the supersymmetry breaks for specific deformation and can

extract the correct full superpotential including the superpotential before the deformation

also. One would like to see the three dimensional analog of Leigh-Strassler [49] RG flow in

mass-deformed BL theory in three dimensions by looking at its holographic dual theory in

four dimensions along the line of [5].

In section 2, we review the supergravity solution in four dimensions in the context of

RG flow, describe two supergravity critical points and present the supergravity multiplet

in terms of SU(3)I × U(1)Y invariant ones.2

In section 3, we deform BL theory by adding one of the mass term among four chiral

superfields, along the lines of [51, 52], write down the superpotential in N = 2 superfields

and describe the scale dimensions for the superfields at UV and IR.

In section 4, the OSp(2|4) representations(energy, spin, hypercharge) and SU(3)I rep-

resentations in the supergravity mass spectrum for each multiplet at the N = 2 critical

point and the corresponding N = 2 superfield in the boundary gauge theory are given.

The Kahler potential at IR is obtained.

In section 5, we end up with the future directions.

2. The holographic N = 2 supersymmetric RG flow in four dimensions

By gauging the SO(8) subgroup of E7 in the global E7 × local SU(8) supergravity [53], de

Wit and Nicolai [54] constructed a four-dimensional supergravity theory. This theory has

self-interaction of a single massless N = 8 supermultiplet of spins (2, 3
2 , 1, 1

2 , 0±) but with

local SO(8) × local SU(8) invariance. It is well known [55] that the 70 real scalars of N = 8

supergravity live on the coset space E7(7)/SU(8) because 63 fields may be gauged away

by an SU(8) rotation and are described by an element of the fundamental 56-dimensional

representation of E7. Then the effective nontrivial potential arising from SO(8) gauging

can be written in compact form. The complex self-dual tensor describes the 35 scalars and

35 pseudo-scalar fields of N = 8 supergravity. After gauge fixing, one does not distinguish

between SO(8) and SU(8) indices. The full supersymmetric solution where both scalars

and pseudo-scalars vanish yields SO(8) vacuum state with N = 8 supersymmetry. Note

that SU(8) is not a symmetry of the vacuum.

It is known that, in N = 8 supergravity, there also exists a N = 2 supersymmet-

ric, SU(3)I × U(1)Y invariant vacuum [56]. To reach this critical point, one has to turn

1For the AdS5 × S
5 background with D3-branes, it is well known in [48] that the holographic dual is

studied for the flow of N = 4 super Yang-Mills theory to the N = 1 supersymmetric Leigh-Strassler fixed

point [49]. There exist earlier works on the M-theory flow solutions in 11 dimensions [50].
2We put the index I in SU(3) group for “invariance” in order to emphasize that along the flow SU(3)

group is preserved. The index Y in U(1)Y is for the hypercharge in the context of AdS4 supergravity and

is related to U(1)R charge in the context of boundary gauge theory.
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Symmetry λ λ′ V W

SO(8) 0 0 −6g2 1

SU(3)I × U(1)Y
√

2 sinh−1 1√
3

√
2 sinh−1 1√

2
−9

√
3

2 g2 3
3
4

2

Table 1: Summary of two critical points with symmetry group, supergravity fields, scalar potential

and superpotential.

on expectation values of both scalar λ and pseudo-scalar λ′ fields where the completely

antisymmetric self-dual and anti-self-dual tensors are invariant under SU(3)I × U(1)Y .

Therefore 56-beins can be written as 56× 56 matrix whose elements are some functions of

scalar and pseudo-scalars. Then the SU(3)I × U(1)Y -invariant scalar potential of N = 8

supergravity is given by [57, 56, 3]

V (λ, λ′) = g2

[

16

3

(

∂W

∂λ

)2

+ 4

(

∂W

∂λ′

)2

− 6W 2

]

(2.1)

where g is SO(8) gauge coupling constant and the superpotential can be written as [3, 5]

W (λ, λ′) =
1

16
e
− 1

2
√

2
λ−

√
2λ′

(

3 − e
√

2λ + 6e
√

2λ′
+ 3e2

√
2λ′

+ 6e
√

2(λ+λ′) − e
√

2(λ+2λ′)
)

.(2.2)

There are two critical points and we summarize these in table 1.

• SO(8) critical point

There is well-known, trivial critical point at which all the scalars vanish(λ = λ′ = 0)

and whose cosmological constant Λ = −6g2 from (2.1) and which preserves N = 8

supersymmetry.

• SU(3)I × U(1)Y critical point

There is a critical point at λ =
√

2 sinh−1
(

1√
3

)

and λ′ =
√

2 sinh−1
(

1√
2

)

and the

cosmological constant Λ = −9
√

3
2 g2. This critical point has an unbroken N = 2

supersymmetry.

For the supergravity description of the nonconformal RG flow from one scale to another

connecting the two critical points, the three dimensional Poincare invariant metric takes

the form ds2 = e2A(r)ηµνdxµdxν + dr2 where ηµν = (−,+,+) and r is the coordinate

transverse to the domain wall. Then the supersymmetric flow equations [3, 5] with (2.2)

are described as

dλ

dr
=

8

3

√
2g

∂W

∂λ
,

dλ′

dr
= 2

√
2g

∂W

∂λ′ ,
dA

dr
= −

√
2gW. (2.3)

The AdS4 geometries at the end points imply conformal symmetry in the UV and IR

limits of the field theory. We’ll return to this when we discuss about the Kahler potential

in section 4.
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Since the unbroken group symmetry at the stationary point is SU(3)I×U(1)Y , the fields

of the N = 8 theory, transforming in SO(8) representations, should be decomposed into

SU(3)I × U(1)Y representations. From the quadratic fermion terms of the gauged N = 8

supergravity Lagrangian [56], there exist the massless and massive graviton mass terms.

According to the decomposition SO(8) → SU(3)I ×U(1)Y , the spin 3
2 field breaks into [56]

8 →
[

1 1
2
⊕ 1− 1

2

]

⊕ 3 1
6
⊕ 3̄− 1

6
, (2.4)

and the two singlets in square bracket correspond to the massless graviton of the N = 2

theory. The other terms in the quadratic fermion terms of the gauged N = 8 supergravity

Lagrangian provide the spin 1
2 masses and contain the Goldstino mass term. It turns out

that there is no octet term and so the octet mass term vanishes. The tensors in gauged

N = 8 supergravity [54] have SU(8) indices where the upper index transforms in 8 and

the lower index transforms in 8̄. Using the charge normalization of [56], one assigns the

charges of 1
6 and −1

6 to the lower indices a and ā respectively where a = 1, 2, 3 and the

lower indices 4 and 4̄ should be assigned charges 1
2 and −1

2 respectively. These charges

appear in (2.4). A new complex basis is introduced with an index A and Ā and the 8 of

SO(8) in cartesian system is relabelled by A and Ā where A = a, 4 and Ā = ā, 4̄.

From the branching rule of SO(8) into SU(3)I×U(1)Y , the spin 1
2 field transforms as [56]

56 → 1 1
2
⊕ 1− 1

2
⊕ 6− 1

6
⊕ 6̄ 1

6
⊕ 1− 1

2
⊕ 1 1

2
⊕

[

8 1
2
⊕ 8− 1

2

]

⊕ 3 1
6
⊕ 3− 5

6
⊕ 3 1

6
⊕ 3̄− 1

6
⊕ 3̄ 5

6
⊕ 3̄− 1

6
⊕

[

3 1
6
⊕ 3̄− 1

6

]

, (2.5)

and the six Goldstino modes that are absorbed into massive spin 3
2 fields are identified with

triplets and anti-triplets in square bracket and the two octets in square bracket correspond

to the massless vector multiplets of the N = 2 theory. The decomposition of the vector

fields with respect to SO(8) [56]

28 → 10 ⊕ 3 2
3
⊕ 3− 1

3
⊕ 3− 1

3
⊕ 3̄− 2

3
⊕ 3̄ 1

3
⊕ 3̄ 1

3
⊕ [10] ⊕ [80] (2.6)

implies that the singlet in square bracket corresponds to the massless graviton of the N = 2

theory while the octet in square bracket corresponds to the massless vector multiplets of

the N = 2 theory. Finally from the branching rule for spin 0 field [56]

70 → 10 ⊕ 10 ⊕ 11 ⊕ 10 ⊕ 1−1 ⊕ [80 ⊕ 80] ⊕ 3− 1
3
⊕ 3̄ 1

3
⊕ 6 1

3
⊕ 6− 2

3
⊕ 6̄− 1

3
⊕ 6̄ 2

3

⊕
[

10 ⊕ 3 2
3
⊕ 3− 1

3
⊕ 3− 1

3
⊕ 3̄− 2

3
⊕ 3̄ 1

3
⊕ 3̄ 1

3

]

, (2.7)

the two octets in square bracket correspond to the massless vector multiplets of the N = 2

theory and the nineteen Goldstone bosons modes are identified with singlet, triplets and

anti-triplets in square bracket. Their quantum numbers are in agreement with those of

massive vectors in (2.6).

Finally, spin 2 field has the breaking 1 → 10 and is located at N = 2 massless graviton

multiplet.
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We’ll rearrange (2.4), (2.5), (2.6) and (2.7) in the context of supergravity multiplet with

corresponding OSp(2|4) quantum numbers in section 4. The singlets are placed at long

massive vector multiplet, triplets and anti-triplets are located at short massive gravitino

multiplet and sextets and anti-sextets sit in short massive hypermultiplet.

3. An N = 2 supersymmetric membrane flow in three dimensional de-

formed BL theory

The original BL Lagrangian [7] consists of the Chern-Simons terms, the kinetic terms for

matter fields, the Yukawa term and the potential term with supersymmetry transformations

on the gauge and matter fields. The BF Lorentzian Lagrangian [12 – 14] can be obtained by

choosing structure constant of BL theory appropriately with a Lorentzian bi-invariant met-

ric. Then the Chern-Simons terms of BL theory become BF term and the kinetic terms for

matter fields contain B-dependent terms besides other derivative terms. The simplest mass

deformation to the BL Lagrangian is to add the single fermion mass term with modified

supersymmetry transformations and other terms in the Lagrangian due to this deformation

term [52, 51]. The aim of the first part in this section is to introduce the several mass terms

for the fermion in the original BL Lagrangian. This procedure should preserve the exact

N = 2 supersymmetry. We determine what is the correct expression for the bosonic mass

terms in the modified Lagrangian we should add to the original BL Lagrangian.

Let us consider the deformed BL theory by adding four mass parameters m1,m2,m3

and m4 to the BL theory Lagrangian, compared to [51] where there are three mass param-

eters.3 See also the relevant paper by [52] on the mass deformation. Then the fermionic

mass terms4 from [7] are given by

Lf.m. = − i

2
habΨ̄

a
(

m1Γ
3579 + m2Γ

35810 + m3Γ
36710 − m4Γ

3689
)

Ψb. (3.1)

Here the indices a, b, . . . run over the adjoint of the Lie algebra for BL theory(and those

indices run over the adjoint plus +,− for BF Lorentzian model). Then the corresponding

fermionic supersymmetric transformation gets modified by

δmΨa =
(

m1Γ
3579 + m2Γ

35810 + m3Γ
36710 − m4Γ

3689
)

Xa
I ΓIǫ. (3.2)

We impose three constraints on the ǫ parameter that satisfies the 1
4 BPS condition(the

number of supersymmetries is four) Γ5678ǫ = Γ56910ǫ = Γ78910ǫ = −ǫ.5 Now we introduce

3This paragraph is based on the discussion with K. Hosomichi intensively.
4The self-dual and anti self-dual tensors that are invariant under the SU(3)I × U(1)Y in N = 8 gauged

supergravity are given by X+
ijkl = +[(δ1234

ijkl +δ5678
ijkl )+(δ1256

ijkl +δ3478
ijkl )+(δ1278

ijkl +δ3456
ijkl )] and X−

ijkl = −[(δ1357
ijkl −

δ2468
ijkl ) + (δ1368

ijkl − δ2457
ijkl ) + (δ1458

ijkl − δ2367
ijkl ) − (δ1467

ijkl − δ2358
ijkl )]. The choice of [51] for the mass parameters

corresponds to the self-dual tensor for the indices 1234, 1256, and 1278 while the choice of this paper for

the mass parameters corresponds to the anti self-dual tensor for the indices 1357, 1368, 1458 and 1467 if we

shift all the indices by adding 2. For example, the indices 3689 in (3.1) play the role of 1467 in above anti

self-dual tensor.
5These indices 5678, 56910 and 78910 can be interpreted as 3456, 3478 and 5678 in X+

ijkl of footnote 4

respectively.
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the bosonic mass term which preserves N = 2 supersymmetry and determine (m2)IJ :

Lb.m. = −1

2
habX

a
I (m2)IJXb

J . (3.3)

Using the supersymmetry variation for Xa
I , δXa

I = iǭΓIΨ
a, and the supersymmetry vari-

ation for Ψa by the equation (3.2), the variation for the bosonic mass term (3.3) plus the

fermionic mass term (3.1) leads to

δL= ihabX
a
I (m2)IJΨ̄bΓJǫ−ihabΨ̄

a
(

m1Γ
3579+m2Γ

35810+m3Γ
36710−m4Γ

3689
)2

Xb
IΓIǫ.(3.4)

In order to vanish this, the bosonic mass term (m2)IJΓJ , by computing the mass term for

second term of (3.4) explicitly,6 should take the form

(m1 − m2 − m3 + m4)
2(Γ3 + Γ4) + (m1 − m2 + m3 − m4)

2(Γ5 + Γ6)

+(m1 + m2 − m3 − m4)
2(Γ7 + Γ8) + (m1 + m2 + m3 + m4)

2(Γ9 + Γ10). (3.5)

In particular, when all the mass parameters are equal m1 = m2 = m3 = m4 ≡ m, then

the diagonal bosonic mass term in (3.5) has nonzero components only for 99 and 1010 and

other components(33, 44, 55, 66, 77 and 88) are vanishing:7

(m2)IJ = diag(0, 0, 0, 0, 0, 0, 16m2 , 16m2). (3.6)

Of course, the quartic terms for Xa
I to the Lagrangian for our mass deformation can be

fixed similarly, as in [51]. Let us introduce the four complex N = 2 superfields as follows:

Φ1 = X3 + iX4 + · · · , Φ2 = X5 + iX6 + · · · ,

Φ3 = X7 + iX8 + · · · , Φ4 = X9 + iX10 + · · · (3.7)

where we do not include the N = 2 fermionic fields. Or one can introduce these chiral

superfields with an explicit SU(4)I fundamental representation as follows:

ΦA, A = (a, 4), a = 1, 2, 3.

Recall from section 2 that the 8 of SO(8) is relabelled by A and Ā where A = a, 4 and

Ā = ā, 4̄. Then the subset Φa where a = 1, 2, 3 constitute a 3 representation of SU(3)

inside SU(4). The potential in the BL theory [7] is given by

1

3κ2
habf

a
cde Xc

IX
d
JXe

Kf b
fghXf

I Xg
JXh

K

where κ is a Chern-Simons coefficient. In terms of N = 2 superfields, this contains the

following expressions

2

κ2
habf

a
cde f b

fgh

[

Φc
1Φ

d
2Φ

e
3Φ̄

f
1Φ̄g

2Φ̄
h
3 + three other terms

]

6The relevant terms become m2
1 + m2

2 + m2
3 + m2

4 − 2(m1m4 + m2m3)Γ
5678 + 2(m1m2 + m3m4)Γ

78910 +

2(m1m3 + m2m4)Γ
56910 explicitly.

7This resembles the structure of AIJ
1 tensor of AdS4 supergravity where the AIJ

1 tensor has two distinct

eigenvalues with degeneracies 6 and 2 respectively. The degeneracy 2 is quite related to the N = 2

supersymmetry. For the maximal supersymmetric case [51], all the diagonal mass matrix elements are equal

and nonzero and this reflects the fact that the AIJ
1 tensor has eight equal eigenvalues with degeneracies 8.
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by using the relation (3.7) between the component fields and superfields and a fundamental

identity is used. This provides the superpotential:
√

2
κ

fabcdf
ABCD TrΦa

AΦb
BΦc

CΦd
D. Then

this superpotential possesses SU(4)I global symmetry.8

In N = 2 language, the superpotential consisting of the mass term (3.6) and quartic

term, where we redefine Φ4 by diagonalizing the mass matrix and introducing the new

bosonic variables Xa
9 and Xa

10, is given by

W =
1

2
Mhab Tr Φa

4Φ
b
4 +

√
2

κ
fabcdf

ABCD Tr Φa
AΦb

BΦc
CΦd

D. (3.8)

The global symmetry SU(4)I of SO(8) is broken to SU(3)I . The second term is the su-

perpotential required by N = 8 supersymmetry as we mentioned above and the first term

breaks N = 8 down to N = 2. The theory has matter multiplet in three flavors Φ1,Φ2

and Φ3 transforming in the adjoint. The SO(8)R symmetry of the N = 8 gauge theory is

broken to SU(3)I × U(1)R where the former is a flavor symmetry under which the matter

multiplet forms a triplet and the latter is the R-symmetry of the N = 2 theory. Therefore,

we turn on the mass perturbation in the UV and flow to the IR. This maps to turning

on certain scalar fields in the AdS4 supergravity where the scalars approach to zero in the

UV(r → ∞) and develop a nontrivial profile as a function of r becoming more significantly

different from zero as one goes to the IR(r → −∞). We can integrate out the massive scalar

Φ4 with adjoint index at a low enough scale and this results in the 6-th order superpotential

Tr(fabcf
ABCDΦa

AΦb
BΦc

C)2.

The scale dimensions of four chiral superfields Φi(i = 1, 2, 3, 4) are ∆i = 1
2 at the UV.

This is because the sum of ∆i is equal to the canonical dimension of the superpotential

which is 3 − 1 = 2 [59]. By symmetry, one arrives at ∆i = 1
2 . The beta function from

the mass term of Φ4 in (3.8) leads to βM = M(2∆4 − 2) [6]. Or one can compute the

anomalous mass dimension γi explicitly as follows [59]:

β1,1,1,1 ∼ 4 × (3 − 2) − 2 × (3 − 1) + γ1 + γ2 + γ3 + γ4 = γ1 + γ2 + γ3 + γ4,

β0,0,0,2 ∼ 2 × (3 − 2) − 2 × (3 − 1) + 2γ4 = −2 + 2γ4. (3.9)

The N = 2 supersymmetric gauge theory in three dimensions has a holomorphic super-

potential and non-perturbative renormalizations of the superpotential are restricted by

holomorphy. The form of (3.9) is a consequence of the non-renormalization theorem for

superpotential in N = 2 supersymmetry in three dimensions. Then the vanishing of

these (3.9) leads to γ1 = γ2 = γ3 = −1
3 and γ4 = 1. This imposes one relation between

8Note that in [58] appeared in the same daily distribution of the arXiv, the N = 2 superspace formalism

for BL theory with gauge group SU(2)×SU(2) was found and the superpotential has SU(4)I ×U(1)R global

symmetry. When the normalization constants in the N = 2 superspace Lagrangian hold some relation, the

R-symmetry is enhanced to SO(8) and further requirement on these constants allows this N = 2 superspace

Lagrangian to reduce to the one in component Lagrangian. For BF Lorentzian model, it is not known yet

how to write down the Lagrangian in N = 2 superspace formalism. So it is not clear at this moment how

one can proceed further on the direction of BF Lorentzian model. Furthermore, the mass deformed BL

theory with two M2-branes is equivalent to the mass deformed U(2) × U(2) Chern-Simons gauge theory

of [15] with level k = 1 or k = 2.
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M and κ suggesting that the theory has a fixed line of couplings. Furthermore, the con-

formal dimension for Φ4 is given by ∆4 = 1
2(1 + γ4) = 1. This comes from the relation

M(−2+2∆4) = M
2 (−2+2γ4) using the equation (1) of [59]. Similarly, ∆1 = ∆2 = ∆3 = 1

3 .

In other words, the IR values of scaling dimensions are ∆4 = 1 and ∆i = 1
3(i = 1, 2, 3).

Then the U(1)R symmetry acts on Φ1,Φ2,Φ3 and Φ4 with charges (1
3 , 1

3 , 1
3 , 1) which are

correctly related to the above anomalous dimensions. So both terms in the superpoten-

tial (3.8) have R charge 2, as they must. If we allow the mass M to rotate by a phase

then we have a further U(1) symmetry under which Φi(i = 1, 2, 3) has charge 1
3 and Φ4 has

charge zero while the mass M has charge 1.

In next section, the gauge invariant composites in the superconformal field theory at

the IR are mapped to the corresponding supergravity bulk fields.

4. The OSp(2|4) spectrum and operator map between bulk and boundary

theories

A further detailed correspondence between fields of AdS4 supergravity in four dimensions

and composite operators of the IR field theory in three dimensions is described in this

section.

The even subalgebra of the superalgebra OSp(2|4) is a direct sum of subalgebras where

Sp(4, R) ≃ SO(3, 2) is the isometry algebra of AdS4 and the compact subalgebra SO(2)

generates U(1)R symmetry [60]. The maximally compact subalgebra is then SO(2)E ×
SO(3)S × SO(2)Y where the generator of SO(2)E is the hamiltonian of the system and

its eigenvalues E are the energy levels of states for the system, the group SO(3)S is the

roatation group and its representation s describes the spin states of the system, and the

eigenvalue y of the generator of SO(2)Y is the hypercharge of the state.

A supermultiplet, a unitary irreducible representations(UIR) of the superalgebra

OSp(2|4), consists of a finite number of UIR of the even subalgebra and a particle state is

characterized by a spin s, a mass m and a hypercharge y. The relations between the mass

and energy are given in [61] sometime ago.

Let us classify the supergravity multiplet which is invariant under SU(3)I ×U(1)Y and

describe them in the three dimensional boundary theory.

• Long massive vector multiplet

The conformal dimension ∆, which is irrational and unprotected, is ∆ = E0 and the

U(1)R charge is 0. The U(1)R charge9 is related to a hypercharge by

R = y. (4.1)

The K(x, θ+, θ−) is a general “unconstrained” scalar superfield in the boundary the-

ory. Since the Kahler potential evolves in the RG flow, the scalar field that measures

the approach of the trajectory to the N = 2 point sits in the supergravity multiplet

9The assignment of this U(1)R charge is different from the one given in [62] where the SO(8) branching

rule is the same as the present case because both theories have the same number of supersymmetries.
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Boundary Operator(BO) Energy Spin 0 Spin 1
2 Spin 1

K =
(

Φ1Φ̄1 + Φ2Φ̄2 + Φ3Φ̄3

)
3
2 E0 = 1

2(1 +
√

17) 10

E0 + 1
2 = 1

2(2 +
√

17) 1 1
2
⊕ 1− 1

2

E0 + 1 = 1
2(3 +

√
17) 11 ⊕ 10 ⊕ 1−1 10

E0 + 3
2 = 1

2(4 +
√

17) 1 1
2
⊕ 1− 1

2

E0 + 2 = 1
2(5 +

√
17) 10

Table 2: The OSp(2|4) representations(energy, spin, hypercharge) and SU(3)I representations in

the supergravity mass spectrum for long massive vector multiplet(corresponding to table 1 of [56])

at the N = 2 critical point and the corresponding N = 2 superfield in the boundary gauge theory.

dual to K(x, θ+, θ−), as in AdS5 supergravity [48]. This scalar field has a dimen-

sion 1
2 (5 +

√
17) in the IR. We’ll come back this issue at the end of this section.

The corresponding OSp(2|4) representations and corresponding N = 2 superfield in

three dimensions are listed in table 2. The relation between ∆ and the mass for

various fields can be found in [61]. For spin 0 and 1, their relations are given by

∆± =
3±

q

1+ m2

4

2 where we have to choose the correct root among two cases as in [63]

while for spin 1
2 , the explicit form is given by ∆ = 6+|m|

4 . Using these relations, one

can read off the mass for each state.

• Short massive hypermultiplet

The conformal dimension ∆ is the U(1)R charge for the lowest component which can

be written as ∆ = E0
2 = |R|. The AdS4 supergravity multiplet corresponds to the

chiral scalar superfield Φc(x, θ+) that satisfies D+
α Φc(x, θ+) = 0 making the multiplet

short [64].10 That is, in the θ+ expansion, there are three component fields in the

bulk. For the anti-chiral scalar superfield, one can see the similar structure. Since

the massive field Φ4 is integrated out in the flow, the IR theory contains the massless

chiral superfields Φ1,Φ2,Φ3 with ∆ = 1
3 and U(1)R charge 1

3 from the discussion of

section 3 with (4.1). Then the bilinear of these chiral superfields by symmetrizing the

two SU(3)I indices provides a symmetric representation of SU(3)I , 6, corresponding

to Tr Φ(iΦj) and its conjugate representation 6̄, corresponding to Tr Φ̄(iΦ̄j). Using the

relations between the dimension and mass for spin 0 and 1
2 , one can also read off the

mass for each state. The corresponding OSp(2|4) representations and corresponding

superfield are listed in table 3.

• Short massive gravitino multiplet

The conformal dimension ∆ is the twice of U(1)R charge plus 3
2 for the lowest com-

ponent, ∆ = E0 = 2|R| + 3
2 . This corresponds to spinorial superfield Φα(x, θ+) that

satisfies D+αΦα(x, θ+) = 0 [65]. Of course, this constraint makes the multiplet short.

10The conformal dimension ∆ and U(1)R charge for θ+
α are 1

2
and 1

2
while the conformal dimension ∆

and U(1)R charge for θ−
α are 1

2
and − 1

2
.
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Boundary Operator Energy Spin 0 Spin 1
2

Tr Φ(iΦj) E0 = 4
3 6− 2

3
⊕ 6̄ 2

3

complex E0 + 1
2 = 11

6 6− 1
6
⊕ 6̄ 1

6

E0 + 1 = 7
3 6 1

3
⊕ 6̄− 1

3

Table 3: The OSp(2|4) representations(energy, spin, hypercharge) and SU(3)I representations in

the supergravity mass spectrum for short massive hypermultiplet(corresponding to table 2 of [56])

at the N = 2 critical point and the corresponding N = 2 superfield in the boundary gauge theory

where E0 = 2|y| = 2|R|.

B.O. Energy Spin 0 Spin 1
2 Spin 1 Spin 3

2

Tr WαΦj E0 = 11
6 3 1

6
⊕ 3̄− 1

6

complex E0+ 1
2 = 7

3 3− 1
3
⊕ 3̄ 1

3
3 2

3
⊕3− 1

3
⊕3̄− 2

3
⊕3̄ 1

3

E0+1= 17
6 3 1

6
⊕3̄− 1

6
⊕3− 5

6
⊕3̄ 5

6
3 1

6
⊕ 3̄− 1

6

E0+ 3
2 = 10

3 3− 1
3
⊕ 3̄ 1

3

Table 4: The OSp(2|4) representations(energy, spin, hypercharge) and SU(3)I representations

in the supergravity mass spectrum for short massive gravitino multiplet(corresponding to table 3

of [56]) at the N = 2 critical point and the corresponding N = 2 superfield in the boundary gauge

theory where E0 = 2|y|+ 3

2
= 2|R| + 3

2
.

In the θ± expansion, the component fields in the bulk are located with appropriate

quantum numbers. The massless chiral superfields Φ1,Φ2,Φ3 have ∆ = 1
3 and U(1)R

charge 1
3 as before. The gauge superfield Wα has ∆ = 3

2 and U(1)R charge −1
6 and its

conjugate field has opposite U(1)R charge 1
6 . Then one can identify Tr WαΦj with 3

and Tr W̄αΦ̄j with 3̄. The corresponding OSp(2|4) representations and corresponding

superfield are listed in table 4. For spin 3
2 , the relation for the mass and dimension

is given by ∆ = 6+|m+4|
4 and for spin 0, 1 and 1

2 , the previous relations hold.

• N = 2 massless graviton multiplet

This can be identified with the stress energy tensor superfield Tαβ(x, θ+, θ−) that

satisfies the equations D+
α Tαβ = 0 = D−

α Tαβ [64, 66]. In components, the θ± ex-

pansion of this superfield has the stress energy tensor, the N = 2 supercurrents, and

U(1)R symmetry current. The conformal dimension ∆ = 2 and the U(1)R charge

is 0. This has protected dimension. The corresponding OSp(2|4) representations

and corresponding superfield are listed in table 5. For spin 2, we have the relation

∆± =
3±

q

9+ m2

4

2 and for massless case, this leads to ∆+ = 3.

• N = 2 massless vector multiplet

This conserved vector current is given by a scalar superfield JA(x, θ+, θ−) that satis-

fies D+αD+
α JA = 0 = D−αD−

α JA [64]. This transforms in the adjoint representation

of SU(3)I flavor group. The boundary object is given by Tr Φ̄TAΦ where the fla-
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Boundary Operator Energy Spin 0 Spin 1
2 Spin 1 Spin 3

2 Spin 2

Tr Φ̄TAΦ E0 = 1 80

E0 + 1
2 = 3

2 8 1
2
⊕ 8− 1

2

E0 + 1 = 2 80 80

Tαβ E0 = 2 10

E0 + 1
2 = 5

2 1 1
2
⊕ 1− 1

2

E0 + 1 = 3 10

Table 5: The OSp(2|4) representations(energy, spin, hypercharge) and SU(3)I representations in

the supergravity mass spectrum for “ultra” short multiplets at the N = 2 critical point and the

corresponding N = 2 superfields in the boundary gauge theory.

vor indices in Φi and Φ̄i are contracted and the generator TA is N × N matrix with

A = 1, 2, . . . , N2−1. The conformal dimension ∆ = 1 and the U(1)R charge is 0. This

has also protected dimension. By taking a tensor product between 3 and 3̄, one gets

this octet 8 of SU(3)I representation. The corresponding OSp(2|4) representations

and corresponding superfield are listed in table 5 also.

Let us describe the Kahler potential more detail we mentioned in the long vector

multiplet. The Kahler potential is found in [6], by looking at the 11 dimensional flow

equation [5], as

K =
1

4
τM2L

2eA

(

ρ2 +
1

ρ6

)

,
dq

dr
=

2

Lρ2
q (4.2)

where ρ ≡ e
λ

4
√

2 and χ ≡ λ′√
2
. The corresponding Kahler metric is given by [6]

ds2 =
1

4q2

(

q
d

dq

)2

Kdq2 +

(

q
d

dq

)

Kdx̂Idx̂I +

(

q2 d2

dq2

)

K(x̂IJIJdx̂J)2 (4.3)

where the coordinate q is defined as q ≡ w1w̄1 + w2w̄2 + w3w̄3 and the three complex

coordinates are given by w1 =
√

q
(

x̂1 + ix̂2
)

, w2 =
√

q
(

x̂3 + ix̂4
)

and w3 =
√

q
(

x̂5 + ix̂6
)

on C3 and the x̂’s are coordinates on an S5 of unit radius. So we reparametrize C3 with

coordinates x̂1, . . . , x̂6 and q. Here J is an antisymmetric matrix with J12 = J34 = J56 = 1.

The dx̂Idx̂I is a metric on a round S5 and (x̂IJIJdx̂J)2 is the U(1) fiber in the description

of S5. Note that there is a relation dK
dr

= τM2LeA [6]. The moduli space is parametrized

by the vacuum expectation values of the three massless scalars Φ1,Φ2 and Φ3 denoted as

w1, w2 and w3. The wi(i = 1, 2, 3) transform in the fundamental representation 3 of SU(3)I
while their complex conjugates w̄i transform in the anti-fundamental representation 3̄.

At the UV end of the flow which is just AdS4 ×S7, A(r) ∼ 2
L
r from the solution (2.3)

for A(r) and W = 1 from table 1. Moreover, the radial coordinate on moduli space
√

q ∼ e
r
L ∼ e

A(r)
2 from (4.2) by substituting ρ = 1 from table 1. Therefore, the Kahler

potential from (4.2) behaves as K ∼ eA(r) ∼ q. This implies that K = Φ1Φ̄1 +Φ2Φ̄2+Φ3Φ̄3

at the UV in the boundary theory. Since the scaling dimensions for Φi(i = 1, 2, 3) and its
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conjugate fields are 1
2 , the scaling dimension of K is equal to 1 which is correct because

it should have scaling dimension 1 “classically” from
∫

d3x∂ϕ∂ϕ̄K∂µϕ∂µϕ̄ where ϕ are the

massless scalars with some scaling dimensions.

At the IR end of the flow, A(r) ∼ 3
3
4

L
r with g ≡

√
2

L
from the solution (2.3) for A(r) and

W = 3
3
4

2 from table 1. Moreover,
√

q ∼ e
3
− 1

4 r
L ∼ e

A(r)
3 from (4.2) by substituting ρ = 3

1
8

from table 1. Therefore, the Kahler potential behaves as K ∼ eA(r) ∼ q
3
2 . Then K becomes

K = (Φ1Φ̄1 + Φ2Φ̄2 + Φ3Φ̄3)
3
2 in the boundary theory. Obviously, from the tensor product

between 3 and 3̄ of SU(3)I representation, one gets a singlet 10 with U(1)R charge 0. Note

that Φi(i = 1, 2, 3) has U(1)R charge 1
3 while Φ̄i(i = 1, 2, 3) has U(1)R charge −1

3 . Since the

scaling dimensions for Φi(i = 1, 2, 3) and its conjugate fields are 1
3 , the scaling dimension

of K is 1 which is consistent with “classical” value as before. The corresponding Kahler

metric (4.3) provides the Kahler term in the action. For the superfield K(x, θ+, θ−), the

action looks like
∫

d3xd2θ+d2θ−K(x, θ+, θ−). The component content of this action can be

worked out straightforwardly using the projection technique. This implies that the highest

component field in θ±-expansion, the last element in table 2, has a conformal dimension
1
2 (5 +

√
17) in the IR as before.11

We have presented the gauge invariant combinations of the massless superfields of the

gauge theory whose scaling dimensions and SU(3)I × U(1)R quantum numbers exactly

match the four short multiplets in tables 3, 4, 5 observed in the supergravity. There exists

one additional long multiplet in table 2 which completes the picture.

5. Conclusions and outlook

By studying the mass-deformed Bagger-Lambert theory, preserving SU(3)I × U(1)R sym-

metry, with the addition of mass term for one of the four adjoint chiral superfields, one

identifies an N = 2 supersymmetric membrane flow in three dimensional deformed BL

theory with the holographic N = 2 supersymmetric RG flow in four dimensions. There-

fore, the N = 8 gauged supergravity critical point is indeed the holographic dual of the

mass-deformed N = 8 BL theory. So far, we have focused on the particular mass defor-

mation (3.1) preserving SU(3)I × U(1)R symmetry. It would be interesting to discover

11So far we have considered the leading behavior of Kahler potential at the two end points of UV and IR.

This can be understood from the “classical” description of scaling dimension above also. However, one can

look at next-to-leading order “quantum” corrections to this Kahler potential. The exact expression for the

Kahler potential along “the whole flow” is given by (4.2). One can easily obtain the asymptotic behaviors of

A(r) and ρ(r) around IR region. The former can be determined through the last one of first order differential

equations (2.3) by expanding the superpotential W around ρ = 3
1

8 and χ = 1
2

cosh−1 2 while the latter can

be obtained through the first equation of (2.3) by expanding the right hand side of that equation around

IR fixed point values ρ = 3
1

8 and χ = 1
2

cosh−1 2. Then one expects that the irrational piece 3 −
√

17 from

the mass spectrum found in [3] arises in the exponent of next-to-leading order r-dependent term in ρ and χ.

The coefficient appearing in the next-to-leading order of Kahler potential is related to the mass of Φ4 via

M2-brane probe analysis. One can approximate the Kahler potential by K ∼ (Φ1Φ̄1 + Φ2Φ̄2 + Φ3Φ̄3)
3

2 up

to leading order at “the IR fixed point” but along the flow around the IR, in general, the Kahler potential

is given by (4.2). For the relevant work on AdS5 × S
5 compactification with D3-branes, see the section 2.5

of [6] for example.
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all the possible classification for the mass deformations and see how they appear in the

AdS4 × S7 background where some of them are nonsupersymmetric and some of them are

supersymmetric [67].
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