Holographic supergravity dual to three dimensional $\mathcal{N}=2$ gauge theory

Changhyun Ahn
Department of Physics, Kyungpook National University,
Taegu 702-701, Korea
E-mail: ahn@knu.ac.kr

Abstract: By examining the previously known holographic $\mathcal{N}=2$ supersymmetric renormalization group flow solution in four dimensions, we describe the mass-deformed BaggerLambert theory, that has $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{R}$ symmetry, by the addition of mass term for one of the four adjoint chiral superfields as its dual theory. A further detailed correspondence between fields of $A d S_{4}$ supergravity and composite operators of the infrared field theory is obtained.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence.

Contents

1. Introduction 11
2. The holographic $\mathcal{N}=2$ supersymmetric RG flow in four dimensions 2
3. An $\mathcal{N}=2$ supersymmetric membrane flow in three dimensional deformed BL theory
4. The $\operatorname{OSp}(2 \mid 4)$ spectrum and operator map between bulk and boundary theories
5. Conclusions and outlook

1. Introduction

The holographic theory on M2-branes is given by an $\mathcal{N}=8$ supersymmetric theory with eight scalars, eight fermions and sixteen supercharges. The $A d S_{4} \times \mathbf{S}^{7}$ background yields the holographic dual of a strongly coupled superconformal fixed point [1. 2]. By lifting the renormalization $\operatorname{group}(\mathrm{RG})$ flow in four dimensions [3, 4] to eleven dimensions, the M-theory solutions [5] which are holographic duals of flows of the maximally supersymmetric theory in three dimensions are examined. Giving one of four complex superfields a mass leads to an $\mathcal{N}=2$ supersymmetric flow(four supersymmetries) to a new superconformal fixed point. The vacuum expectation values of remaining three complex superfields parametrize the Coulomb branch at this fixed point. A M2-brane probe analysis of the supergravity solution shows a three complex-dimensional space of moduli for the brane probe [6]. However, the microscopic configuration of coincident M2-branes was still lacking.

Recently, Bagger and Lambert(BL) have proposed a Lagrangian to describe the low energy dynamics of coincident M2-branes in [7]. See also relevant papers [8-11. This BL theory is three dimensional $\mathcal{N}=8$ supersymmetric field theory with $\mathrm{SO}(8)$ global symmetry based on new algebraic structure, 3-algebra. In particular, 3-algebra with Lorentzian signature was proposed by [12- [14]. The generators of the 3 -algebra are the generators of an arbitrary semisimple Lie algebra plus two additional null generators. This theory with gauge group $\mathrm{SU}(N)$ is a good candidate for the theory of N coincident M2-branes. We list some relevant works on the BL theory, from various different point of views, in 15-47.

In this paper, starting from the first order differential equations, that are the supersymmetric flow solution in four dimensional $\mathcal{N}=8$ gauged supergravity interpolating between an exterior $A d S_{4}$ region with maximal supersymmetry and an interior $A d S_{4}$ with one quarter of the maximal supersymmetry, we want to interpret this as the RG flow in $\mathcal{N}=8$

BL theory which has $\operatorname{OSp}(8 \mid 4)$ symmetry broken to an $\mathcal{N}=2$ theory which has $\operatorname{OSp}(2 \mid 4)$ symmetry by the addition of a mass term for one of the four adjoint chiral superfields. A precise correspondence is obtained between fields of bulk supergravity in the $A d S_{4}$ region and composite operators of the IR field theory in three dimensions. ${ }^{1}$ Since the Lagrangian is known, one can check how the supersymmetry breaks for specific deformation and can extract the correct full superpotential including the superpotential before the deformation also. One would like to see the three dimensional analog of Leigh-Strassler 49 RG flow in mass-deformed BL theory in three dimensions by looking at its holographic dual theory in four dimensions along the line of [5].

In section 2, we review the supergravity solution in four dimensions in the context of RG flow, describe two supergravity critical points and present the supergravity multiplet in terms of $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$ invariant ones. ${ }^{2}$

In section 3 , we deform BL theory by adding one of the mass term among four chiral superfields, along the lines of [51, 52], write down the superpotential in $\mathcal{N}=2$ superfields and describe the scale dimensions for the superfields at UV and IR.

In section 4 , the $\operatorname{OSp}(2 \mid 4)$ representations(energy, spin, hypercharge) and $\mathrm{SU}(3)_{I}$ representations in the supergravity mass spectrum for each multiplet at the $\mathcal{N}=2$ critical point and the corresponding $\mathcal{N}=2$ superfield in the boundary gauge theory are given. The Kahler potential at IR is obtained.

In section 5 , we end up with the future directions.

2. The holographic $\mathcal{N}=2$ supersymmetric RG flow in four dimensions

By gauging the $\mathrm{SO}(8)$ subgroup of E_{7} in the global $E_{7} \times$ local $\mathrm{SU}(8)$ supergravity [53], de Wit and Nicolai 54 constructed a four-dimensional supergravity theory. This theory has self-interaction of a single massless $\mathcal{N}=8$ supermultiplet of spins $\left(2, \frac{3}{2}, 1, \frac{1}{2}, 0^{ \pm}\right)$but with local $\mathrm{SO}(8) \times$ local $\mathrm{SU}(8)$ invariance. It is well known 555 that the 70 real scalars of $\mathcal{N}=8$ supergravity live on the coset space $E_{7(7)} / \mathrm{SU}(8)$ because 63 fields may be gauged away by an $\mathrm{SU}(8)$ rotation and are described by an element of the fundamental 56 -dimensional representation of E_{7}. Then the effective nontrivial potential arising from $\mathrm{SO}(8)$ gauging can be written in compact form. The complex self-dual tensor describes the 35 scalars and 35 pseudo-scalar fields of $\mathcal{N}=8$ supergravity. After gauge fixing, one does not distinguish between $\mathrm{SO}(8)$ and $\mathrm{SU}(8)$ indices. The full supersymmetric solution where both scalars and pseudo-scalars vanish yields $\mathrm{SO}(8)$ vacuum state with $\mathcal{N}=8$ supersymmetry. Note that $\mathrm{SU}(8)$ is not a symmetry of the vacuum.

It is known that, in $\mathcal{N}=8$ supergravity, there also exists a $\mathcal{N}=2$ supersymmetric, $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$ invariant vacuum [56]. To reach this critical point, one has to turn

[^0]| Symmetry | λ | λ^{\prime} | V | W |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SO}(8)$ | 0 | 0 | $-6 g^{2}$ | 1 |
| $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$ | $\sqrt{2} \sinh ^{-1} \frac{1}{\sqrt{3}}$ | $\sqrt{2} \sinh ^{-1} \frac{1}{\sqrt{2}}$ | $-\frac{9 \sqrt{3}}{2} g^{2}$ | $\frac{3 \frac{3}{4}}{2}$ |

Table 1: Summary of two critical points with symmetry group, supergravity fields, scalar potential and superpotential.
on expectation values of both scalar λ and pseudo-scalar λ^{\prime} fields where the completely antisymmetric self-dual and anti-self-dual tensors are invariant under $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$. Therefore 56 -beins can be written as 56×56 matrix whose elements are some functions of scalar and pseudo-scalars. Then the $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$-invariant scalar potential of $\mathcal{N}=8$ supergravity is given by [57, 56, [3]

$$
\begin{equation*}
V\left(\lambda, \lambda^{\prime}\right)=g^{2}\left[\frac{16}{3}\left(\frac{\partial W}{\partial \lambda}\right)^{2}+4\left(\frac{\partial W}{\partial \lambda^{\prime}}\right)^{2}-6 W^{2}\right] \tag{2.1}
\end{equation*}
$$

where g is $\mathrm{SO}(8)$ gauge coupling constant and the superpotential can be written as (3, 5)

$$
\begin{equation*}
W\left(\lambda, \lambda^{\prime}\right)=\frac{1}{16} e^{-\frac{1}{2 \sqrt{2}} \lambda-\sqrt{2} \lambda^{\prime}}\left(3-e^{\sqrt{2} \lambda}+6 e^{\sqrt{2} \lambda^{\prime}}+3 e^{2 \sqrt{2} \lambda^{\prime}}+6 e^{\sqrt{2}\left(\lambda+\lambda^{\prime}\right)}-e^{\sqrt{2}\left(\lambda+2 \lambda^{\prime}\right)}\right) \tag{2.2}
\end{equation*}
$$

There are two critical points and we summarize these in table 1.

- $\mathrm{SO}(8)$ critical point

There is well-known, trivial critical point at which all the scalars vanish $\left(\lambda=\lambda^{\prime}=0\right)$ and whose cosmological constant $\Lambda=-6 g^{2}$ from (2.1) and which preserves $\mathcal{N}=8$ supersymmetry.

- $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$ critical point

There is a critical point at $\lambda=\sqrt{2} \sinh ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ and $\lambda^{\prime}=\sqrt{2} \sinh ^{-1}\left(\frac{1}{\sqrt{2}}\right)$ and the cosmological constant $\Lambda=-\frac{9 \sqrt{3}}{2} g^{2}$. This critical point has an unbroken $\mathcal{N}=2$ supersymmetry.

For the supergravity description of the nonconformal RG flow from one scale to another connecting the two critical points, the three dimensional Poincare invariant metric takes the form $d s^{2}=e^{2 A(r)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+d r^{2}$ where $\eta_{\mu \nu}=(-,+,+)$ and r is the coordinate transverse to the domain wall. Then the supersymmetric flow equations [3, 运] with (2.2) are described as

$$
\begin{equation*}
\frac{d \lambda}{d r}=\frac{8}{3} \sqrt{2} g \frac{\partial W}{\partial \lambda}, \quad \frac{d \lambda^{\prime}}{d r}=2 \sqrt{2} g \frac{\partial W}{\partial \lambda^{\prime}}, \quad \frac{d A}{d r}=-\sqrt{2} g W . \tag{2.3}
\end{equation*}
$$

The $A d S_{4}$ geometries at the end points imply conformal symmetry in the UV and IR limits of the field theory. We'll return to this when we discuss about the Kahler potential in section 4.

Since the unbroken group symmetry at the stationary point is $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$, the fields of the $\mathcal{N}=8$ theory, transforming in $\mathrm{SO}(8)$ representations, should be decomposed into $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$ representations. From the quadratic fermion terms of the gauged $\mathcal{N}=8$ supergravity Lagrangian [56], there exist the massless and massive graviton mass terms. According to the decomposition $\mathrm{SO}(8) \rightarrow \mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$, the spin $\frac{3}{2}$ field breaks into [56]

$$
\begin{equation*}
\mathbf{8} \rightarrow\left[\mathbf{1}_{\frac{1}{2}} \oplus \mathbf{1}_{-\frac{1}{2}}\right] \oplus \mathbf{3}_{\frac{1}{6}} \oplus \overline{\mathbf{3}}_{-\frac{1}{6}} \tag{2.4}
\end{equation*}
$$

and the two singlets in square bracket correspond to the massless graviton of the $\mathcal{N}=2$ theory. The other terms in the quadratic fermion terms of the gauged $\mathcal{N}=8$ supergravity Lagrangian provide the spin $\frac{1}{2}$ masses and contain the Goldstino mass term. It turns out that there is no octet term and so the octet mass term vanishes. The tensors in gauged $\mathcal{N}=8$ supergravity [54 have $\mathrm{SU}(8)$ indices where the upper index transforms in 8 and the lower index transforms in $\overline{\mathbf{8}}$. Using the charge normalization of [56], one assigns the charges of $\frac{1}{6}$ and $-\frac{1}{6}$ to the lower indices a and \bar{a} respectively where $a=1,2,3$ and the lower indices 4 and $\overline{4}$ should be assigned charges $\frac{1}{2}$ and $-\frac{1}{2}$ respectively. These charges appear in (2.4). A new complex basis is introduced with an index A and \bar{A} and the 8 of $\mathrm{SO}(8)$ in cartesian system is relabelled by A and \bar{A} where $A=a, 4$ and $\bar{A}=\bar{a}, \overline{4}$.

From the branching rule of $\mathrm{SO}(8)$ into $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$, the spin $\frac{1}{2}$ field transforms as [56]

$$
\begin{align*}
\mathbf{5 6} & \rightarrow \mathbf{1}_{\frac{1}{2}} \oplus \mathbf{1}_{-\frac{1}{2}} \oplus \mathbf{6}_{-\frac{1}{6}} \oplus \overline{\mathbf{6}}_{\frac{1}{6}} \oplus \mathbf{1}_{-\frac{1}{2}} \oplus \mathbf{1}_{\frac{1}{2}} \oplus\left[\mathbf{8}_{\frac{1}{2}} \oplus \mathbf{8}_{-\frac{1}{2}}\right] \\
& \oplus \mathbf{3}_{\frac{1}{6}} \oplus \mathbf{3}_{-\frac{5}{6}} \oplus \mathbf{3}_{\frac{1}{6}} \oplus \overline{\mathbf{3}}_{-\frac{1}{6}} \oplus \overline{\mathbf{3}}_{\frac{5}{6}} \oplus \overline{\mathbf{3}}_{-\frac{1}{6}} \oplus\left[\mathbf{3}_{\frac{1}{6}} \oplus \overline{\mathbf{3}}_{-\frac{1}{6}}\right] \tag{2.5}
\end{align*}
$$

and the six Goldstino modes that are absorbed into massive spin $\frac{3}{2}$ fields are identified with triplets and anti-triplets in square bracket and the two octets in square bracket correspond to the massless vector multiplets of the $\mathcal{N}=2$ theory. The decomposition of the vector fields with respect to $\mathrm{SO}(8) 56$

$$
\begin{equation*}
\mathbf{2 8} \rightarrow \mathbf{1}_{0} \oplus \mathbf{3}_{\frac{2}{3}} \oplus \mathbf{3}_{-\frac{1}{3}} \oplus \mathbf{3}_{-\frac{1}{3}} \oplus \overline{\mathbf{3}}_{-\frac{2}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}} \oplus\left[\mathbf{1}_{0}\right] \oplus\left[\mathbf{8}_{0}\right] \tag{2.6}
\end{equation*}
$$

implies that the singlet in square bracket corresponds to the massless graviton of the $\mathcal{N}=2$ theory while the octet in square bracket corresponds to the massless vector multiplets of the $\mathcal{N}=2$ theory. Finally from the branching rule for spin 0 field 56]

$$
\begin{align*}
\mathbf{7 0} & \rightarrow \mathbf{1}_{0} \oplus \mathbf{1}_{0} \oplus \mathbf{1}_{1} \oplus \mathbf{1}_{0} \oplus \mathbf{1}_{-1} \oplus\left[\mathbf{8}_{0} \oplus \mathbf{8}_{0}\right] \oplus \mathbf{3}_{-\frac{1}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}} \oplus \mathbf{6}_{\frac{1}{3}} \oplus \mathbf{6}_{-\frac{2}{3}} \oplus \overline{\mathbf{6}}_{-\frac{1}{3}} \oplus \overline{\mathbf{6}}_{\frac{2}{3}} \\
& \oplus\left[\mathbf{1}_{0} \oplus \mathbf{3}_{\frac{2}{3}} \oplus \mathbf{3}_{-\frac{1}{3}} \oplus \mathbf{3}_{-\frac{1}{3}} \oplus \overline{\mathbf{3}}_{-\frac{2}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}}\right] \tag{2.7}
\end{align*}
$$

the two octets in square bracket correspond to the massless vector multiplets of the $\mathcal{N}=2$ theory and the nineteen Goldstone bosons modes are identified with singlet, triplets and anti-triplets in square bracket. Their quantum numbers are in agreement with those of massive vectors in (2.6).

Finally, spin 2 field has the breaking $\mathbf{1} \rightarrow \mathbf{1}_{0}$ and is located at $\mathcal{N}=2$ massless graviton multiplet.

We'll rearrange (2.4), (2.5), (2.6) and (2.7) in the context of supergravity multiplet with corresponding $\operatorname{OSp}(2 \mid 4)$ quantum numbers in section 4. The singlets are placed at long massive vector multiplet, triplets and anti-triplets are located at short massive gravitino multiplet and sextets and anti-sextets sit in short massive hypermultiplet.

3. An $\mathcal{N}=2$ supersymmetric membrane flow in three dimensional deformed BL theory

The original BL Lagrangian [7] consists of the Chern-Simons terms, the kinetic terms for matter fields, the Yukawa term and the potential term with supersymmetry transformations on the gauge and matter fields. The BF Lorentzian Lagrangian 12-14 can be obtained by choosing structure constant of BL theory appropriately with a Lorentzian bi-invariant metric. Then the Chern-Simons terms of BL theory become BF term and the kinetic terms for matter fields contain B-dependent terms besides other derivative terms. The simplest mass deformation to the BL Lagrangian is to add the single fermion mass term with modified supersymmetry transformations and other terms in the Lagrangian due to this deformation term [52, 51]. The aim of the first part in this section is to introduce the several mass terms for the fermion in the original BL Lagrangian. This procedure should preserve the exact $\mathcal{N}=2$ supersymmetry. We determine what is the correct expression for the bosonic mass terms in the modified Lagrangian we should add to the original BL Lagrangian.

Let us consider the deformed BL theory by adding four mass parameters m_{1}, m_{2}, m_{3} and m_{4} to the BL theory Lagrangian, compared to [51] where there are three mass parameters. ${ }^{3}$ See also the relevant paper by 52] on the mass deformation. Then the fermionic mass terms ${ }^{4}$ from [7] are given by

$$
\begin{equation*}
\mathcal{L}_{f . m .}=-\frac{i}{2} h_{a b} \bar{\Psi}^{a}\left(m_{1} \Gamma^{3579}+m_{2} \Gamma^{35810}+m_{3} \Gamma^{36710}-m_{4} \Gamma^{3689}\right) \Psi^{b} . \tag{3.1}
\end{equation*}
$$

Here the indices a, b, \ldots run over the adjoint of the Lie algebra for BL theory (and those indices run over the adjoint plus,+- for BF Lorentzian model). Then the corresponding fermionic supersymmetric transformation gets modified by

$$
\begin{equation*}
\delta_{m} \Psi^{a}=\left(m_{1} \Gamma^{3579}+m_{2} \Gamma^{35810}+m_{3} \Gamma^{36710}-m_{4} \Gamma^{3689}\right) X_{I}^{a} \Gamma_{I} \epsilon \tag{3.2}
\end{equation*}
$$

We impose three constraints on the ϵ parameter that satisfies the $\frac{1}{4}$ BPS condition(the number of supersymmetries is four) $\Gamma^{5678} \epsilon=\Gamma^{56910} \epsilon=\Gamma^{78910} \epsilon=-\epsilon .{ }^{5}$ Now we introduce

[^1]the bosonic mass term which preserves $\mathcal{N}=2$ supersymmetry and determine $\left(m^{2}\right)_{I J}$:
\[

$$
\begin{equation*}
\mathcal{L}_{b . m .}=-\frac{1}{2} h_{a b} X_{I}^{a}\left(m^{2}\right)_{I J} X_{J}^{b} . \tag{3.3}
\end{equation*}
$$

\]

Using the supersymmetry variation for $X_{I}^{a}, \delta X_{I}^{a}=i \bar{\epsilon} \Gamma_{I} \Psi^{a}$, and the supersymmetry variation for Ψ^{a} by the equation (3.2), the variation for the bosonic mass term (3.3) plus the fermionic mass term (3.1) leads to

$$
\begin{equation*}
\delta \mathcal{L}=i h_{a b} X_{I}^{a}\left(m^{2}\right)_{I J} \bar{\Psi}^{b} \Gamma_{J} \epsilon-i h_{a b} \bar{\Psi}^{a}\left(m_{1} \Gamma^{3579}+m_{2} \Gamma^{35810}+m_{3} \Gamma^{36710}-m_{4} \Gamma^{3689}\right)^{2} X_{I}^{b} \Gamma_{I} \epsilon .(\tag{3.4}
\end{equation*}
$$

In order to vanish this, the bosonic mass term $\left(m^{2}\right)_{I J} \Gamma_{J}$, by computing the mass term for second term of (3.4) explicitly, ${ }^{6}$ should take the form

$$
\begin{align*}
& \left(m_{1}-m_{2}-m_{3}+m_{4}\right)^{2}\left(\Gamma_{3}+\Gamma_{4}\right)+\left(m_{1}-m_{2}+m_{3}-m_{4}\right)^{2}\left(\Gamma_{5}+\Gamma_{6}\right) \\
& +\left(m_{1}+m_{2}-m_{3}-m_{4}\right)^{2}\left(\Gamma_{7}+\Gamma_{8}\right)+\left(m_{1}+m_{2}+m_{3}+m_{4}\right)^{2}\left(\Gamma_{9}+\Gamma_{10}\right) . \tag{3.5}
\end{align*}
$$

In particular, when all the mass parameters are equal $m_{1}=m_{2}=m_{3}=m_{4} \equiv m$, then the diagonal bosonic mass term in (3.5) has nonzero components only for 99 and 1010 and other components ($33,44,55,66,77$ and 88) are vanishing: ${ }^{7}$

$$
\begin{equation*}
\left(m^{2}\right)_{I J}=\operatorname{diag}\left(0,0,0,0,0,0,16 m^{2}, 16 m^{2}\right) \tag{3.6}
\end{equation*}
$$

Of course, the quartic terms for X_{I}^{a} to the Lagrangian for our mass deformation can be fixed similarly, as in [7]. Let us introduce the four complex $\mathcal{N}=2$ superfields as follows:

$$
\begin{array}{ll}
\Phi_{1}=X_{3}+i X_{4}+\cdots, & \Phi_{2}=X_{5}+i X_{6}+\cdots, \\
\Phi_{3}=X_{7}+i X_{8}+\cdots, & \Phi_{4}=X_{9}+i X_{10}+\cdots \tag{3.7}
\end{array}
$$

where we do not include the $\mathcal{N}=2$ fermionic fields. Or one can introduce these chiral superfields with an explicit $\mathrm{SU}(4)_{I}$ fundamental representation as follows:

$$
\Phi_{A}, \quad A=(a, 4), \quad a=1,2,3
$$

Recall from section 2 that the $\mathbf{8}$ of $\mathrm{SO}(8)$ is relabelled by A and \bar{A} where $A=a, 4$ and $\bar{A}=\bar{a}, \overline{4}$. Then the subset Φ_{a} where $a=1,2,3$ constitute a $\mathbf{3}$ representation of $\mathrm{SU}(3)$ inside $\operatorname{SU}(4)$. The potential in the BL theory [7] is given by

$$
\frac{1}{3 \kappa^{2}} h_{a b} f_{c d e}{ }^{a} X_{I}^{c} X_{J}^{d} X_{K}^{e} f_{f g h}{ }^{b} X_{I}^{f} X_{J}^{g} X_{K}^{h}
$$

where κ is a Chern-Simons coefficient. In terms of $\mathcal{N}=2$ superfields, this contains the following expressions

$$
\frac{2}{\kappa^{2}} h_{a b} f_{c d e}{ }^{a} f_{f g h}^{b}\left[\Phi_{1}^{c} \Phi_{2}^{d} \Phi_{3}^{e} \bar{\Phi}_{1}^{f} \bar{\Phi}_{2}^{g} \bar{\Phi}_{3}^{h}+\text { three other terms }\right]
$$

[^2]by using the relation (3.7) between the component fields and superfields and a fundamental identity is used. This provides the superpotential: $\frac{\sqrt{2}}{\kappa} f_{a b c d} f^{A B C D} \operatorname{Tr} \Phi_{A}^{a} \Phi_{B}^{b} \Phi_{C}^{c} \Phi_{D}^{d}$. Then this superpotential possesses $\mathrm{SU}(4)_{I}$ global symmetry. ${ }^{8}$

In $\mathcal{N}=2$ language, the superpotential consisting of the mass term (3.6) and quartic term, where we redefine Φ_{4} by diagonalizing the mass matrix and introducing the new bosonic variables X_{9}^{a} and X_{10}^{a}, is given by

$$
\begin{equation*}
W=\frac{1}{2} M h_{a b} \operatorname{Tr} \Phi_{4}^{a} \Phi_{4}^{b}+\frac{\sqrt{2}}{\kappa} f_{a b c d} f^{A B C D} \operatorname{Tr} \Phi_{A}^{a} \Phi_{B}^{b} \Phi_{C}^{c} \Phi_{D}^{d} \tag{3.8}
\end{equation*}
$$

The global symmetry $\mathrm{SU}(4)_{I}$ of $\mathrm{SO}(8)$ is broken to $\mathrm{SU}(3)_{I}$. The second term is the superpotential required by $\mathcal{N}=8$ supersymmetry as we mentioned above and the first term breaks $\mathcal{N}=8$ down to $\mathcal{N}=2$. The theory has matter multiplet in three flavors Φ_{1}, Φ_{2} and Φ_{3} transforming in the adjoint. The $\operatorname{SO}(8)_{R}$ symmetry of the $\mathcal{N}=8$ gauge theory is broken to $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{R}$ where the former is a flavor symmetry under which the matter multiplet forms a triplet and the latter is the R-symmetry of the $\mathcal{N}=2$ theory. Therefore, we turn on the mass perturbation in the UV and flow to the IR. This maps to turning on certain scalar fields in the $A d S_{4}$ supergravity where the scalars approach to zero in the $\mathrm{UV}(r \rightarrow \infty)$ and develop a nontrivial profile as a function of r becoming more significantly different from zero as one goes to the $\operatorname{IR}(r \rightarrow-\infty)$. We can integrate out the massive scalar Φ_{4} with adjoint index at a low enough scale and this results in the 6 -th order superpotential $\operatorname{Tr}\left(f_{a b c} f^{A B C D} \Phi_{A}^{a} \Phi_{B}^{b} \Phi_{C}^{c}\right)^{2}$.

The scale dimensions of four chiral superfields $\Phi_{i}(i=1,2,3,4)$ are $\Delta_{i}=\frac{1}{2}$ at the UV. This is because the sum of Δ_{i} is equal to the canonical dimension of the superpotential which is $3-1=2$ 59. By symmetry, one arrives at $\Delta_{i}=\frac{1}{2}$. The beta function from the mass term of Φ_{4} in (3.8) leads to $\beta_{M}=M\left(2 \Delta_{4}-2\right)$ [6]. Or one can compute the anomalous mass dimension γ_{i} explicitly as follows 59:

$$
\begin{align*}
& \beta_{1,1,1,1} \sim 4 \times(3-2)-2 \times(3-1)+\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4} \\
& \beta_{0,0,0,2} \sim 2 \times(3-2)-2 \times(3-1)+2 \gamma_{4}=-2+2 \gamma_{4} \tag{3.9}
\end{align*}
$$

The $\mathcal{N}=2$ supersymmetric gauge theory in three dimensions has a holomorphic superpotential and non-perturbative renormalizations of the superpotential are restricted by holomorphy. The form of (3.9) is a consequence of the non-renormalization theorem for superpotential in $\mathcal{N}=2$ supersymmetry in three dimensions. Then the vanishing of these (3.9) leads to $\gamma_{1}=\gamma_{2}=\gamma_{3}=-\frac{1}{3}$ and $\gamma_{4}=1$. This imposes one relation between

[^3]M and κ suggesting that the theory has a fixed line of couplings. Furthermore, the conformal dimension for Φ_{4} is given by $\Delta_{4}=\frac{1}{2}\left(1+\gamma_{4}\right)=1$. This comes from the relation $M\left(-2+2 \Delta_{4}\right)=\frac{M}{2}\left(-2+2 \gamma_{4}\right)$ using the equation (1) of [5]. Similarly, $\Delta_{1}=\Delta_{2}=\Delta_{3}=\frac{1}{3}$. In other words, the IR values of scaling dimensions are $\Delta_{4}=1$ and $\Delta_{i}=\frac{1}{3}(i=1,2,3)$. Then the $\mathrm{U}(1)_{R}$ symmetry acts on $\Phi_{1}, \Phi_{2}, \Phi_{3}$ and Φ_{4} with charges $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1\right)$ which are correctly related to the above anomalous dimensions. So both terms in the superpotential (3.8) have R charge 2 , as they must. If we allow the mass M to rotate by a phase then we have a further $\mathrm{U}(1)$ symmetry under which $\Phi_{i}(i=1,2,3)$ has charge $\frac{1}{3}$ and Φ_{4} has charge zero while the mass M has charge 1 .

In next section, the gauge invariant composites in the superconformal field theory at the IR are mapped to the corresponding supergravity bulk fields.

4. The $\operatorname{OSp}(2 \mid 4)$ spectrum and operator map between bulk and boundary theories

A further detailed correspondence between fields of $A d S_{4}$ supergravity in four dimensions and composite operators of the IR field theory in three dimensions is described in this section.

The even subalgebra of the superalgebra $\operatorname{OSp}(2 \mid 4)$ is a direct sum of subalgebras where $\mathrm{Sp}(4, R) \simeq \mathrm{SO}(3,2)$ is the isometry algebra of $A d S_{4}$ and the compact subalgebra $\mathrm{SO}(2)$ generates $\mathrm{U}(1)_{R}$ symmetry 60]. The maximally compact subalgebra is then $\mathrm{SO}(2)_{E} \times$ $\mathrm{SO}(3)_{S} \times \mathrm{SO}(2)_{Y}$ where the generator of $\mathrm{SO}(2)_{E}$ is the hamiltonian of the system and its eigenvalues E are the energy levels of states for the system, the group $\mathrm{SO}(3)_{S}$ is the roatation group and its representation s describes the spin states of the system, and the eigenvalue y of the generator of $\mathrm{SO}(2)_{Y}$ is the hypercharge of the state.

A supermultiplet, a unitary irreducible representations(UIR) of the superalgebra $\operatorname{OSp}(2 \mid 4)$, consists of a finite number of UIR of the even subalgebra and a particle state is characterized by a spin s, a mass m and a hypercharge y. The relations between the mass and energy are given in 61] sometime ago.

Let us classify the supergravity multiplet which is invariant under $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$ and describe them in the three dimensional boundary theory.

- Long massive vector multiplet

The conformal dimension Δ, which is irrational and unprotected, is $\Delta=E_{0}$ and the $\mathrm{U}(1)_{R}$ charge is 0 . The $\mathrm{U}(1)_{R}$ charge ${ }^{9}$ is related to a hypercharge by

$$
\begin{equation*}
R=y . \tag{4.1}
\end{equation*}
$$

The $K\left(x, \theta^{+}, \theta^{-}\right)$is a general "unconstrained" scalar superfield in the boundary theory. Since the Kahler potential evolves in the RG flow, the scalar field that measures the approach of the trajectory to the $\mathcal{N}=2$ point sits in the supergravity multiplet

[^4]| Boundary Operator (BO) | Energy | Spin 0 | Spin $\frac{1}{2}$ | Spin 1 |
| :---: | :---: | :---: | :---: | :---: |
| $K=\left(\Phi_{1} \bar{\Phi}_{1}+\Phi_{2} \bar{\Phi}_{2}+\Phi_{3} \bar{\Phi}_{3}\right)^{\frac{3}{2}}$ | $E_{0}=\frac{1}{2}(1+\sqrt{17})$ | $\mathbf{1}_{0}$ | | |
| | $E_{0}+\frac{1}{2}=\frac{1}{2}(2+\sqrt{17})$ | | $\mathbf{1}_{\frac{1}{2}} \oplus \mathbf{1}_{-\frac{1}{2}}$ | |
| | $E_{0}+1=\frac{1}{2}(3+\sqrt{17})$ | $\mathbf{1}_{1} \oplus \mathbf{1}_{0} \oplus \mathbf{1}_{-1}$ | | $\mathbf{1}_{0}$ |
| | $E_{0}+\frac{3}{2}=\frac{1}{2}(4+\sqrt{17})$ | | $\mathbf{1}_{\frac{1}{2}} \oplus \mathbf{1}_{-\frac{1}{2}}$ | |
| | $E_{0}+2=\frac{1}{2}(5+\sqrt{17})$ | $\mathbf{1}_{0}$ | | |

Table 2: The $\operatorname{OSp}(2 \mid 4)$ representations(energy, spin, hypercharge) and $\operatorname{SU}(3)_{I}$ representations in the supergravity mass spectrum for long massive vector multiplet(corresponding to table 1 of [56]) at the $\mathcal{N}=2$ critical point and the corresponding $\mathcal{N}=2$ superfield in the boundary gauge theory.
dual to $K\left(x, \theta^{+}, \theta^{-}\right)$, as in $A d S_{5}$ supergravity 48]. This scalar field has a dimension $\frac{1}{2}(5+\sqrt{17})$ in the IR. We'll come back this issue at the end of this section. The corresponding $\operatorname{OSp}(2 \mid 4)$ representations and corresponding $\mathcal{N}=2$ superfield in three dimensions are listed in table 2. The relation between Δ and the mass for various fields can be found in 661. For spin 0 and 1, their relations are given by $\Delta_{ \pm}=\frac{3 \pm \sqrt{1+\frac{m^{2}}{4}}}{2}$ where we have to choose the correct root among two cases as in 63] while for spin $\frac{1}{2}$, the explicit form is given by $\Delta=\frac{6+|m|}{4}$. Using these relations, one can read off the mass for each state.

- Short massive hypermultiplet

The conformal dimension Δ is the $\mathrm{U}(1)_{R}$ charge for the lowest component which can be written as $\Delta=\frac{E_{0}}{2}=|R|$. The $A d S_{4}$ supergravity multiplet corresponds to the chiral scalar superfield $\Phi_{c}\left(x, \theta^{+}\right)$that satisfies $D_{\alpha}^{+} \Phi_{c}\left(x, \theta^{+}\right)=0$ making the multiplet short [64]. ${ }^{10}$ That is, in the θ^{+}expansion, there are three component fields in the bulk. For the anti-chiral scalar superfield, one can see the similar structure. Since the massive field Φ_{4} is integrated out in the flow, the IR theory contains the massless chiral superfields $\Phi_{1}, \Phi_{2}, \Phi_{3}$ with $\Delta=\frac{1}{3}$ and $\mathrm{U}(1)_{R}$ charge $\frac{1}{3}$ from the discussion of section 3 with (4.1). Then the bilinear of these chiral superfields by symmetrizing the two $\mathrm{SU}(3)_{I}$ indices provides a symmetric representation of $\mathrm{SU}(3)_{I}, \mathbf{6}$, corresponding to $\operatorname{Tr} \Phi_{(i} \Phi_{j)}$ and its conjugate representation $\overline{\mathbf{6}}$, corresponding to $\operatorname{Tr} \bar{\Phi}_{(i} \bar{\Phi}_{j)}$. Using the relations between the dimension and mass for spin 0 and $\frac{1}{2}$, one can also read off the mass for each state. The corresponding $\operatorname{OSp}(2 \mid 4)$ representations and corresponding superfield are listed in table 3.

- Short massive gravitino multiplet

The conformal dimension Δ is the twice of $\mathrm{U}(1)_{R}$ charge plus $\frac{3}{2}$ for the lowest component, $\Delta=E_{0}=2|R|+\frac{3}{2}$. This corresponds to spinorial superfield $\Phi_{\alpha}\left(x, \theta^{+}\right)$that satisfies $D^{+\alpha} \Phi_{\alpha}\left(x, \theta^{+}\right)=0$ (65]. Of course, this constraint makes the multiplet short.

[^5]| Boundary Operator | Energy | Spin 0 | Spin $\frac{1}{2}$ |
| :---: | :---: | :---: | :---: |
| $\operatorname{Tr} \Phi_{(i} \Phi_{j)}$ | $E_{0}=\frac{4}{3}$ | $\mathbf{6}_{-\frac{2}{3}} \oplus \overline{\mathbf{6}}_{\frac{2}{3}}$ | |
| complex | $E_{0}+\frac{1}{2}=\frac{11}{6}$ | | $\mathbf{6}_{-\frac{1}{6}} \oplus \overline{\mathbf{6}}_{\frac{1}{6}}$ |
| | $E_{0}+1=\frac{7}{3}$ | $\mathbf{6}_{\frac{1}{3}} \oplus \overline{\mathbf{6}}_{-\frac{1}{3}}$ | |

Table 3: The $\operatorname{OSp}(2 \mid 4)$ representations(energy, spin, hypercharge) and $\operatorname{SU}(3)_{I}$ representations in the supergravity mass spectrum for short massive hypermultiplet(corresponding to table 2 of [56]) at the $\mathcal{N}=2$ critical point and the corresponding $\mathcal{N}=2$ superfield in the boundary gauge theory where $E_{0}=2|y|=2|R|$.

B.O.	Energy	Spin 0	Spin $\frac{1}{2}$	Spin 1	Spin $\frac{3}{2}$
Tr $W_{\alpha} \Phi_{j}$	$E_{0}=\frac{11}{6}$		$\mathbf{3}_{\frac{1}{6}} \oplus \overline{\mathbf{3}}_{-\frac{1}{6}}$		
complex	$E_{0}+\frac{1}{2}=\frac{7}{3}$	$\mathbf{3}_{-\frac{1}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}}$	$\mathbf{3}_{\frac{2}{3}} \oplus \mathbf{3}_{-\frac{1}{3}} \oplus \overline{\mathbf{3}}_{-\frac{2}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}}$		
	$E_{0}+1=\frac{17}{6}$		$\mathbf{3}_{\frac{1}{6}} \oplus \overline{\mathbf{3}}_{-\frac{1}{6}} \oplus \mathbf{3}_{-\frac{5}{6}} \oplus \overline{\mathbf{3}}_{\overline{5}}^{6}$	$\mathbf{3}_{\frac{1}{6}} \oplus \overline{\mathbf{3}}_{-\frac{1}{6}}$	
	$E_{0}+\frac{3}{2}=\frac{10}{3}$			$\mathbf{3}_{-\frac{1}{3}} \oplus \overline{\mathbf{3}}_{\frac{1}{3}}$	

Table 4: The $\operatorname{OSp}(2 \mid 4)$ representations(energy, spin, hypercharge) and $\operatorname{SU}(3)_{I}$ representations in the supergravity mass spectrum for short massive gravitino multiplet(corresponding to table 3 of 56) at the $\mathcal{N}=2$ critical point and the corresponding $\mathcal{N}=2$ superfield in the boundary gauge theory where $E_{0}=2|y|+\frac{3}{2}=2|R|+\frac{3}{2}$.

In the $\theta^{ \pm}$expansion, the component fields in the bulk are located with appropriate quantum numbers. The massless chiral superfields $\Phi_{1}, \Phi_{2}, \Phi_{3}$ have $\Delta=\frac{1}{3}$ and $\mathrm{U}(1)_{R}$ charge $\frac{1}{3}$ as before. The gauge superfield W_{α} has $\Delta=\frac{3}{2}$ and $\mathrm{U}(1)_{R}$ charge $-\frac{1}{6}$ and its conjugate field has opposite $\mathrm{U}(1)_{R}$ charge $\frac{1}{6}$. Then one can identify $\operatorname{Tr} W_{\alpha} \Phi_{j}$ with $\mathbf{3}$ and $\operatorname{Tr} \bar{W}_{\alpha} \bar{\Phi}_{j}$ with $\overline{\mathbf{3}}$. The corresponding $\operatorname{OSp}(2 \mid 4)$ representations and corresponding superfield are listed in table 4 . For spin $\frac{3}{2}$, the relation for the mass and dimension is given by $\Delta=\frac{6+|m+4|}{4}$ and for spin 0,1 and $\frac{1}{2}$, the previous relations hold.

- $\mathcal{N}=2$ massless graviton multiplet

This can be identified with the stress energy tensor superfield $T^{\alpha \beta}\left(x, \theta^{+}, \theta^{-}\right)$that satisfies the equations $D_{\alpha}^{+} T^{\alpha \beta}=0=D_{\alpha}^{-} T^{\alpha \beta}$ [64, 66]. In components, the $\theta^{ \pm}$expansion of this superfield has the stress energy tensor, the $\mathcal{N}=2$ supercurrents, and $\mathrm{U}(1)_{R}$ symmetry current. The conformal dimension $\Delta=2$ and the $\mathrm{U}(1)_{R}$ charge is 0 . This has protected dimension. The corresponding $\operatorname{OSp}(2 \mid 4)$ representations and corresponding superfield are listed in table 5 . For spin 2, we have the relation $\Delta_{ \pm}=\frac{3 \pm \sqrt{9+\frac{m^{2}}{4}}}{2}$ and for massless case, this leads to $\Delta_{+}=3$.

- $\mathcal{N}=2$ massless vector multiplet

This conserved vector current is given by a scalar superfield $J^{A}\left(x, \theta^{+}, \theta^{-}\right)$that satisfies $D^{+\alpha} D_{\alpha}^{+} J^{A}=0=D^{-\alpha} D_{\alpha}^{-} J^{A}$ 64. This transforms in the adjoint representation of $\mathrm{SU}(3)_{I}$ flavor group. The boundary object is given by $\operatorname{Tr} \bar{\Phi} T^{A} \Phi$ where the fla-

Boundary Operator	Energy	Spin 0	Spin $\frac{1}{2}$	Spin 1	Spin $\frac{3}{2}$	Spin 2
$\operatorname{Tr} \bar{\Phi} T^{A} \Phi$	$E_{0}=1$	$\mathbf{8}_{0}$				
	$E_{0}+\frac{1}{2}=\frac{3}{2}$		$\mathbf{8}_{\frac{1}{2}} \oplus \mathbf{8}_{-\frac{1}{2}}$			
	$E_{0}+1=2$	$\mathbf{8}_{0}$		$\mathbf{8}_{0}$		
$T^{\alpha \beta}$	$E_{0}=2$			$\mathbf{1}_{0}$		
	$E_{0}+\frac{1}{2}=\frac{5}{2}$				$\mathbf{1}_{\frac{1}{2}} \oplus \mathbf{1}_{-\frac{1}{2}}$	
	$E_{0}+1=3$				$\mathbf{1}_{0}$	

Table 5: The $\operatorname{OSp}(2 \mid 4)$ representations(energy, spin, hypercharge) and $\mathrm{SU}(3)_{I}$ representations in the supergravity mass spectrum for "ultra" short multiplets at the $\mathcal{N}=2$ critical point and the corresponding $\mathcal{N}=2$ superfields in the boundary gauge theory.
vor indices in Φ_{i} and $\bar{\Phi}_{i}$ are contracted and the generator T^{A} is $N \times N$ matrix with $A=1,2, \ldots, N^{2}-1$. The conformal dimension $\Delta=1$ and the $\mathrm{U}(1)_{R}$ charge is 0 . This has also protected dimension. By taking a tensor product between $\mathbf{3}$ and $\overline{\mathbf{3}}$, one gets this octet $\mathbf{8}$ of $\mathrm{SU}(3)_{I}$ representation. The corresponding $\operatorname{OSp}(2 \mid 4)$ representations and corresponding superfield are listed in table 5 also.

Let us describe the Kahler potential more detail we mentioned in the long vector multiplet. The Kahler potential is found in [6], by looking at the 11 dimensional flow equation [呞, as

$$
\begin{equation*}
K=\frac{1}{4} \tau_{M 2} L^{2} e^{A}\left(\rho^{2}+\frac{1}{\rho^{6}}\right), \quad \frac{d q}{d r}=\frac{2}{L \rho^{2}} q \tag{4.2}
\end{equation*}
$$

where $\rho \equiv e^{\frac{\lambda}{4 \sqrt{2}}}$ and $\chi \equiv \frac{\lambda^{\prime}}{\sqrt{2}}$. The corresponding Kahler metric is given by [6]

$$
\begin{equation*}
d s^{2}=\frac{1}{4 q^{2}}\left(q \frac{d}{d q}\right)^{2} K d q^{2}+\left(q \frac{d}{d q}\right) K d \hat{x}^{I} d \hat{x}^{I}+\left(q^{2} \frac{d^{2}}{d q^{2}}\right) K\left(\hat{x}^{I} J_{I J} d \hat{x}^{J}\right)^{2} \tag{4.3}
\end{equation*}
$$

where the coordinate q is defined as $q \equiv w^{1} \bar{w}^{1}+w^{2} \bar{w}^{2}+w^{3} \bar{w}^{3}$ and the three complex coordinates are given by $w^{1}=\sqrt{q}\left(\hat{x}^{1}+i \hat{x}^{2}\right), w^{2}=\sqrt{q}\left(\hat{x}^{3}+i \hat{x}^{4}\right)$ and $w^{3}=\sqrt{q}\left(\hat{x}^{5}+i \hat{x}^{6}\right)$ on \mathbf{C}^{3} and the \hat{x} 's are coordinates on an \mathbf{S}^{5} of unit radius. So we reparametrize \mathbf{C}^{3} with coordinates $\hat{x}^{1}, \ldots, \hat{x}^{6}$ and q. Here J is an antisymmetric matrix with $J_{12}=J_{34}=J_{56}=1$. The $d \hat{x}^{I} d \hat{x}^{I}$ is a metric on a round \mathbf{S}^{5} and $\left(\hat{x}^{I} J_{I J} d \hat{x}^{J}\right)^{2}$ is the $\mathrm{U}(1)$ fiber in the description of \mathbf{S}^{5}. Note that there is a relation $\frac{d K}{d r}=\tau_{M_{2}} L e^{A}$ [6]. The moduli space is parametrized by the vacuum expectation values of the three massless scalars Φ_{1}, Φ_{2} and Φ_{3} denoted as w^{1}, w^{2} and w^{3}. The $w^{i}(i=1,2,3)$ transform in the fundamental representation $\mathbf{3}$ of $\mathrm{SU}(3)_{I}$ while their complex conjugates \bar{w}^{i} transform in the anti-fundamental representation $\overline{3}$.

At the UV end of the flow which is just $A d S_{4} \times \mathbf{S}^{7}, A(r) \sim \frac{2}{L} r$ from the solution (2.3) for $A(r)$ and $W=1$ from table 1. Moreover, the radial coordinate on moduli space $\sqrt{q} \sim e^{\frac{r}{L}} \sim e^{\frac{A(r)}{2}}$ from (4.2) by substituting $\rho=1$ from table 1 . Therefore, the Kahler potential from (4.2) behaves as $K \sim e^{A(r)} \sim q$. This implies that $K=\Phi_{1} \bar{\Phi}_{1}+\Phi_{2} \bar{\Phi}_{2}+\Phi_{3} \bar{\Phi}_{3}$ at the UV in the boundary theory. Since the scaling dimensions for $\Phi_{i}(i=1,2,3)$ and its
conjugate fields are $\frac{1}{2}$, the scaling dimension of K is equal to 1 which is correct because it should have scaling dimension 1 "classically" from $\int d^{3} x \partial_{\varphi} \partial_{\bar{\varphi}} K \partial_{\mu} \varphi \partial^{\mu} \bar{\varphi}$ where φ are the massless scalars with some scaling dimensions.

At the IR end of the flow, $A(r) \sim \frac{3^{\frac{3}{4}}}{L} r$ with $g \equiv \frac{\sqrt{2}}{L}$ from the solution (2.3) for $A(r)$ and $W=\frac{3^{\frac{3}{4}}}{2}$ from table 1. Moreover, $\sqrt{q} \sim e^{\frac{3^{-\frac{1}{4} r}}{L}} \sim e^{\frac{A(r)}{3}}$ from (4.2) by substituting $\rho=3^{\frac{1}{8}}$ from table 1. Therefore, the Kahler potential behaves as $K \sim e^{A(r)} \sim q^{\frac{3}{2}}$. Then K becomes $K=\left(\Phi_{1} \bar{\Phi}_{1}+\Phi_{2} \bar{\Phi}_{2}+\Phi_{3} \bar{\Phi}_{3}\right)^{\frac{3}{2}}$ in the boundary theory. Obviously, from the tensor product between $\mathbf{3}$ and $\overline{\mathbf{3}}$ of $\mathrm{SU}(3)_{I}$ representation, one gets a singlet $\mathbf{1}_{0}$ with $\mathrm{U}(1)_{R}$ charge 0 . Note that $\Phi_{i}(i=1,2,3)$ has $\mathrm{U}(1)_{R}$ charge $\frac{1}{3}$ while $\bar{\Phi}_{i}(i=1,2,3)$ has $\mathrm{U}(1)_{R}$ charge $-\frac{1}{3}$. Since the scaling dimensions for $\Phi_{i}(i=1,2,3)$ and its conjugate fields are $\frac{1}{3}$, the scaling dimension of K is 1 which is consistent with "classical" value as before. The corresponding Kahler metric (4.3) provides the Kahler term in the action. For the superfield $K\left(x, \theta^{+}, \theta^{-}\right)$, the action looks like $\int d^{3} x d^{2} \theta^{+} d^{2} \theta^{-} K\left(x, \theta^{+}, \theta^{-}\right)$. The component content of this action can be worked out straightforwardly using the projection technique. This implies that the highest component field in $\theta^{ \pm}$-expansion, the last element in table 2, has a conformal dimension $\frac{1}{2}(5+\sqrt{17})$ in the IR as before. ${ }^{11}$

We have presented the gauge invariant combinations of the massless superfields of the gauge theory whose scaling dimensions and $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{R}$ quantum numbers exactly match the four short multiplets in tables $3,4,5$ observed in the supergravity. There exists one additional long multiplet in table 2 which completes the picture.

5. Conclusions and outlook

By studying the mass-deformed Bagger-Lambert theory, preserving $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{R}$ symmetry, with the addition of mass term for one of the four adjoint chiral superfields, one identifies an $\mathcal{N}=2$ supersymmetric membrane flow in three dimensional deformed BL theory with the holographic $\mathcal{N}=2$ supersymmetric RG flow in four dimensions. Therefore, the $\mathcal{N}=8$ gauged supergravity critical point is indeed the holographic dual of the mass-deformed $\mathcal{N}=8$ BL theory. So far, we have focused on the particular mass deformation (3.1) preserving $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{R}$ symmetry. It would be interesting to discover

[^6]all the possible classification for the mass deformations and see how they appear in the $A d S_{4} \times \mathbf{S}^{7}$ background where some of them are nonsupersymmetric and some of them are supersymmetric 67].

Acknowledgments

I would like to thank Kazuo Hosomichi and Sungjay Lee for discussions. This work was supported by grant No. R01-2006-000-10965-0 from the Basic Research Program of the Korea Science \& Engineering Foundation. I acknowledge D. Kutasov for warm hospitality of Particle Theory Group, Enrico Fermi Institute at University of Chicago.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 Int. J. Theor. Phys. 38 (1999) 1113 hep-th/9711200.
[2] N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. 67 (Proc. Suppl.) (1998) 158 hep-th/9705117.
[3] C.-H. Ahn and J. Paeng, Three-dimensional SCFTs, supersymmetric domain wall and renormalization group flow, Nucl. Phys. B 595 (2001) 119 hep-th/0008065.
[4] C.-H. Ahn and K. Woo, Supersymmetric domain wall and RG flow from 4-dimensional gauged $N=8$ supergravity, Nucl. Phys. B 599 (2001) 83 hep-th/0011121.
[5] R. Corrado, K. Pilch and N.P. Warner, An $N=2$ supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 hep-th/0107220.
[6] C.V. Johnson, K.J. Lovis and D.C. Page, The Kähler structure of supersymmetric holographic $R G$ flows, JHEP 10 (2001) 014 hep-th/0107261.
[7] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 arXiv:0711.0955.
[8] J. Bagger and N. Lambert, Modeling multiple M2's, Phys. Rev. D 75 (2007) 045020 hep-th/0611108.
[9] J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 arXiv:0712.3738.
[10] A. Gustavsson, Algebraic structures on parallel M2-branes, arXiv:0709.1260.
[11] A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 arXiv:0802.3456.
[12] J. Gomis, G. Milanesi and J.G. Russo, Bagger-Lambert theory for general Lie algebras, JHEP 06 (2008) 075 arXiv:0805.1012.
[13] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni and H. Verlinde, $N=8$ superconformal gauge theories and M2 branes, arXiv:0805.1087.
[14] P.-M. Ho, Y. Imamura and Y. Matsuo, M2 to D2 revisited, JHEP 07 (2008) 003 arXiv:0805.1202.
[15] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, $N=6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, arXiv:0806.1218.
[16] J.M. Figueroa-O'Farrill, Lorentzian Lie n-algebras, arXiv:0805.4760.
[17] J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, Supersymmetric Yang-Mills theory from Lorentzian three-algebras, arXiv:0806.0738.
[18] F. Passerini, M2-brane superalgebra from Bagger-Lambert theory, arXiv:0806.0363.
[19] J.-H. Park and C. Sochichiu, Single M5 to multiple M2: taking off the square root of Nambu-Goto action, arXiv:0806.0335.
[20] M.A. Bandres, A.E. Lipstein and J.H. Schwarz, Ghost-free superconformal action for multiple M2-branes, JHEP 07 (2008) 117 arXiv:0806.0054.
[21] A. Gustavsson, One-loop corrections to Bagger-Lambert theory, arXiv:0805.4443.
[22] P. De Medeiros, J.M. Figueroa-O'Farrill and E. Mendez-Escobar, Lorentzian Lie 3-algebras and their Bagger-Lambert moduli space, JHEP 07 (2008) 111 arXiv:0805.4363.
[23] H. Lin, Kac-Moody extensions of 3-algebras and M2-branes, JHEP 07 (2008) 136 arXiv:0805.4003.
[24] S. Banerjee and A. Sen, Interpreting the M2-brane action, arXiv:0805.3930.
[25] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, $N=4$ superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 arXiv:0805.3662.
[26] M. Li and T. Wang, M2-branes coupled to antisymmetric fluxes, JHEP 07 (2008) 093 arXiv:0805.3427.
[27] I. Jeon, J. Kim, N. Kim, S.-W. Kim and J.-H. Park, Classification of the BPS states in Bagger-Lambert theory, JHEP 07 (2008) 056 arXiv:0805.3236.
[28] Y. Song, Mass deformation of the multiple M2 branes theory, arXiv:0805.3193.
[29] C. Krishnan and C. Maccaferri, Membranes on calibrations, JHEP 07 (2008) 005 arXiv:0805.3125.
[30] P.-M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 08 (2008) 014 arXiv: 0805.2898 .
[31] H. Fuji, S. Terashima and M. Yamazaki, A new $N=4$ membrane action via orbifold, arXiv:0805.1997.
[32] Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, Janus field theories from multiple M2 branes, Phys. Rev. D 78 (2008) 025027 arXiv:0805.1895.
[33] A. Morozov, From simplified BLG action to the first-quantized M-theory, arXiv:0805.1703.
[34] P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 arXiv:0804.3629.
[35] G. Papadopoulos, On the structure of k-Lie algebras, Class. and Quant. Grav. 25 (2008) 142002 arXiv:0804.3567.
[36] J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane actions, arXiv:0804.3078.
[37] G. Papadopoulos, M2-branes, 3-Lie algebras and Plucker relations, JHEP 05 (2008) 054 arXiv:0804.2662.
[38] E.A. Bergshoeff, M. de Roo and O. Hohm, Multiple M2-branes and the embedding tensor, Class. and Quant. Grav. 25 (2008) 142001 arXiv:0804.2201.
[39] P.-M. Ho, R.-C. Hou and Y. Matsuo, Lie 3-algebra and multiple M2-branes, JHEP 06 (2008) 020 arXiv:0804.2110].
[40] U. Gran, B.E.W. Nilsson and C. Petersson, On relating multiple M2 and D2-branes, arXiv:0804.1784.
[41] J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds, JHEP 05 (2008) 038 arXiv:0804.1256.
[42] N. Lambert and D. Tong, Membranes on an orbifold, arXiv:0804.1114.
[43] A. Morozov, On the problem of multiple M2 branes, JHEP 05 (2008) 076 arXiv:0804.0913.
[44] M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 arXiv: 0803.3803 .
[45] D.S. Berman, L.C. Tadrowski and D.C. Thompson, Aspects of multiple membranes, Nucl. Phys. B 802 (2008) 106 arXiv:0803.3611.
[46] M.A. Bandres, A.E. Lipstein and J.H. Schwarz, $N=8$ superconformal Chern-Simons theories, JHEP 05 (2008) 025 arXiv:0803.3242.
[47] S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 arXiv:0803.3218.
[48] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 hep-th/9904017.
[49] R.G. Leigh and M.J. Strassler, Exactly marginal operators and duality in four-dimensional $N=1$ supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 95 hep-th/9503121.
[50] D. Nemeschansky and N.P. Warner, A family of M-theory flows with four supersymmetries, hep-th/0403006;
C.N. Gowdigere, D. Nemeschansky and N.P. Warner, Supersymmetric solutions with fluxes from algebraic Killing spinors, Adv. Theor. Math. Phys. 7 (2004) 787 hep-th/0306097; C.N. Gowdigere and N.P. Warner, Flowing with eight supersymmetries in M-theory and F-theory, JHEP 12 (2003) 048 hep-th/0212190.
[51] K. Hosomichi, K.-M. Lee and S. Lee, Mass-deformed Bagger-Lambert theory and its BPS objects, arXiv:0804.2519.
[52] J. Gomis, A.J. Salim and F. Passerini, Matrix theory of type IIB plane wave from membranes, JHEP 08 (2008) 002 arXiv:0804.2186.
[53] E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, Phys. Lett. B 76 (1978) 409;
E. Cremmer and B. Julia, The $\mathrm{SO}(8)$ supergravity, Nucl. Phys. B 159 (1979) 141.
[54] B. de Wit and H. Nicolai, $N=8$ supergravity with local $\mathrm{SO}(8) \times \mathrm{SU}(8)$ invariance, Phys. Lett. B 108 (1982) 285; $N=8$ supergravity, Nucl. Phys. B 208 (1982) 323.
[55] E. Cremmer and B. Julia, The $N=8$ supergravity theory. 1. The Lagrangian, Phys. Lett. B 80 (1978) 48 .
[56] H. Nicolai and N.P. Warner, The $\mathrm{SU}(3) \times \mathrm{U}(1)$ invariant breaking of gauged $N=8$ supergravity, Nucl. Phys. B 259 (1985) 412.
[57] N.P. Warner, Some new extrema of the scalar potential of gauged $N=8$ supergravity, Phys. Lett. B 128 (1983) 169; Some properties of the scalar potential in gauged supergravity theories, Nucl. Phys. B 231 (1984) 250.
[58] M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and $A d S_{4} / C F T_{3}$ correspondence, arXiv:0806.1519.
[59] M.J. Strassler, On renormalization group flows and exactly marginal operators in three dimensions, hep-th/9810223.
[60] P. Merlatti, M-theory on $A d S_{4} \times Q(111)$: the complete $O s p(2 \mid 4) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$ spectrum from harmonic analysis, Class. and Quant. Grav. 18 (2001) 2797 hep-th/0012159;
A. Ceresole, G. Dall'Agata, R. D'Auria and S. Ferrara, M-theory on the Stiefel manifold and $3 D$ conformal field theories, JHEP 03 (2000) 011 hep-th/9912107;
D. Fabbri, P. Fré, L. Gualtieri and P. Termonia, $\operatorname{Osp}(N \mid 4)$ supermultiplets as conformal superfields on $d\left(A d S_{4}\right)$ and the generic form of $N=2, D=3$ gauge theories, Class. and Quant. Grav. 17 (2000) 55 hep-th/9905134.
[61] A. Ceresole, P. Fre and H. Nicolai, Multiplet structure and spectra of $N=2$ supersymmetric compactifications, Class. and Quant. Grav. 2 (1985) 133.
[62] C.-H. Ahn, K. Oh and R. Tatar, Branes, orbifolds and the three dimensional $N=2$ SCFT in the large- N limit, JHEP 11 (1998) 024 hep-th/9806041.
[63] C.-H. Ahn, $N=2$ SCFT and M-theory on $A d S_{4} \times Q^{1,1,1}$, Phys. Lett. B 466 (1999) 171 hep-th/9908162.
[64] D. Fabbri et al., 3D superconformal theories from Sasakian seven-manifolds: new nontrivial evidences for $A d S_{4} / C F T_{3}$, Nucl. Phys. B 577 (2000) 547 hep-th/9907219.
[65] D. Fabbri, P. Fré, L. Gualtieri and P. Termonia, M-theory on $A d S_{4} \times M^{111}$: the complete Osp $(2 \mid 4) \times \mathrm{SU}(3) \times \mathrm{SU}(2)$ spectrum from harmonic analysis, Nucl. Phys. B 560 (1999) 617 hep-th/9903036.
[66] C.-H. Ahn, More Penrose limit of $A d S_{4} \times N^{0,1,0}$ and $N=3$ gauge theory, Mod. Phys. Lett. A 17 (2002) 1847 [hep-th/0206176]; Penrose limit of $A d S_{4} \times V_{5,2}$ and operators with large R charge, Mod. Phys. Lett. A 17 (2002) 2067 hep-th/0206029]; Comments on Penrose limit of $A d S_{4} \times M^{1,1,1}$, Phys. Lett. B 540 (2002) 111 hep-th/0205109]; More on Penrose limit of AdS $S_{4} \times Q^{1,1,1}$, Phys. Lett. B 539 (2002) 281 hep-th/0205008.
[67] C.-H. Ahn and T. Itoh, The 11-dimensional metric for AdS/CFT RG flows with common $\mathrm{SU}(3)$ invariance, Nucl. Phys. B 646 (2002) 257 hep-th/0208137; An $N=1$ supersymmetric G_{2}-invariant flow in M-theory, Nucl. Phys. B 627 (2002) 45 hep-th/0112010; Dielectric branes in non-supersymmetric $\mathrm{SO}(3)$-invariant perturbation of three-dimensional $N=8$ Yang-Mills theory, Phys. Rev. D 64 (2001) 086006 hep-th/0105044;
C.-H. Ahn and K.-S. Woo, Domain wall from gauged $D=4, N=8$ supergravity. II, JHEP 11 (2003) 014 hep-th/0209128; Domain wall and membrane flow from other gauged $D=4$, $N=8$ supergravity. I, Nucl. Phys. B 634 (2002) 141 hep-th/0109010];
C.-H. Ahn and S.-J. Rey, More CFTs and $R G$ flows from deforming M2/M5-brane horizon, Nucl. Phys. B 572 (2000) 188 hep-th/9911199; Three-dimensional CFTs and RG flow from squashing M2-brane horizon, Nucl. Phys. B 565 (2000) 210 hep-th/9908110.

[^0]: ${ }^{1}$ For the $A d S_{5} \times \mathbf{S}^{5}$ background with D3-branes, it is well known in 48 that the holographic dual is studied for the flow of $\mathcal{N}=4$ super Yang-Mills theory to the $\mathcal{N}=1$ supersymmetric Leigh-Strassler fixed point 49. There exist earlier works on the M-theory flow solutions in 11 dimensions 50.
 ${ }^{2}$ We put the index I in $\mathrm{SU}(3)$ group for "invariance" in order to emphasize that along the flow $\mathrm{SU}(3)$ group is preserved. The index Y in $\mathrm{U}(1)_{Y}$ is for the hypercharge in the context of $A d S_{4}$ supergravity and is related to $\mathrm{U}(1)_{R}$ charge in the context of boundary gauge theory.

[^1]: ${ }^{3}$ This paragraph is based on the discussion with K. Hosomichi intensively.
 ${ }^{4}$ The self-dual and anti self-dual tensors that are invariant under the $\mathrm{SU}(3)_{I} \times \mathrm{U}(1)_{Y}$ in $\mathcal{N}=8$ gauged supergravity are given by $X_{i j k l}^{+}=+\left[\left(\delta_{i j k l}^{1234}+\delta_{i j k l}^{5678}\right)+\left(\delta_{i j k l}^{1256}+\delta_{i j k l}^{3478}\right)+\left(\delta_{i j k l}^{1278}+\delta_{i j k l}^{3456}\right)\right]$ and $X_{i j k l}^{-}=-\left[\left(\delta_{i j k l}^{1357}-\right.\right.$ $\left.\left.\delta_{i j k l}^{2468}\right)+\left(\delta_{i j k l}^{1368}-\delta_{i j k l}^{2457}\right)+\left(\delta_{i j k l}^{1458}-\delta_{i j k l}^{2367}\right)-\left(\delta_{i j k l}^{1467}-\delta_{i j k l}^{2358}\right)\right]$. The choice of 51 for the mass parameters corresponds to the self-dual tensor for the indices 1234,1256 , and 1278 while the choice of this paper for the mass parameters corresponds to the anti self-dual tensor for the indices $1357,1368,1458$ and 1467 if we shift all the indices by adding 2. For example, the indices 3689 in (3.1) play the role of 1467 in above anti self-dual tensor.
 ${ }^{5}$ These indices 5678,56910 and 78910 can be interpreted as 3456,3478 and 5678 in $X_{i j k l}^{+}$of footnote 4 respectively.

[^2]: ${ }^{6}$ The relevant terms become $m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}-2\left(m_{1} m_{4}+m_{2} m_{3}\right) \Gamma^{5678}+2\left(m_{1} m_{2}+m_{3} m_{4}\right) \Gamma^{78910}+$ $2\left(m_{1} m_{3}+m_{2} m_{4}\right) \Gamma^{56910}$ explicitly.
 ${ }^{7}$ This resembles the structure of $A_{1}^{I J}$ tensor of $A d S_{4}$ supergravity where the $A_{1}^{I J}$ tensor has two distinct eigenvalues with degeneracies 6 and 2 respectively. The degeneracy 2 is quite related to the $\mathcal{N}=2$ supersymmetry. For the maximal supersymmetric case 51, all the diagonal mass matrix elements are equal and nonzero and this reflects the fact that the $A_{1}^{I J}$ tensor has eight equal eigenvalues with degeneracies 8 .

[^3]: ${ }^{8}$ Note that in 58] appeared in the same daily distribution of the arXiv, the $\mathcal{N}=2$ superspace formalism for BL theory with gauge group $\mathrm{SU}(2) \times \mathrm{SU}(2)$ was found and the superpotential has $\mathrm{SU}(4)_{I} \times \mathrm{U}(1)_{R}$ global symmetry. When the normalization constants in the $\mathcal{N}=2$ superspace Lagrangian hold some relation, the R-symmetry is enhanced to $\mathrm{SO}(8)$ and further requirement on these constants allows this $\mathcal{N}=2$ superspace Lagrangian to reduce to the one in component Lagrangian. For BF Lorentzian model, it is not known yet how to write down the Lagrangian in $\mathcal{N}=2$ superspace formalism. So it is not clear at this moment how one can proceed further on the direction of BF Lorentzian model. Furthermore, the mass deformed BL theory with two M2-branes is equivalent to the mass deformed $\mathrm{U}(2) \times \mathrm{U}(2)$ Chern-Simons gauge theory of 15] with level $k=1$ or $k=2$.

[^4]: ${ }^{9}$ The assignment of this $\mathrm{U}(1)_{R}$ charge is different from the one given in 62 where the $\mathrm{SO}(8)$ branching rule is the same as the present case because both theories have the same number of supersymmetries.

[^5]: ${ }^{10}$ The conformal dimension Δ and $\mathrm{U}(1)_{R}$ charge for θ_{α}^{+}are $\frac{1}{2}$ and $\frac{1}{2}$ while the conformal dimension Δ and $\mathrm{U}(1)_{R}$ charge for θ_{α}^{-}are $\frac{1}{2}$ and $-\frac{1}{2}$.

[^6]: ${ }^{11}$ So far we have considered the leading behavior of Kahler potential at the two end points of UV and IR. This can be understood from the "classical" description of scaling dimension above also. However, one can look at next-to-leading order "quantum" corrections to this Kahler potential. The exact expression for the Kahler potential along "the whole flow" is given by (4.2). One can easily obtain the asymptotic behaviors of $A(r)$ and $\rho(r)$ around IR region. The former can be determined through the last one of first order differential equations (2.3) by expanding the superpotential W around $\rho=3^{\frac{1}{8}}$ and $\chi=\frac{1}{2} \cosh ^{-1} 2$ while the latter can be obtained through the first equation of (2.3) by expanding the right hand side of that equation around IR fixed point values $\rho=3^{\frac{1}{8}}$ and $\chi=\frac{1}{2} \cosh ^{-1} 2$. Then one expects that the irrational piece $3-\sqrt{17}$ from the mass spectrum found in 3 arises in the exponent of next-to-leading order r-dependent term in ρ and χ. The coefficient appearing in the next-to-leading order of Kahler potential is related to the mass of Φ_{4} via M2-brane probe analysis. One can approximate the Kahler potential by $K \sim\left(\Phi_{1} \bar{\Phi}_{1}+\Phi_{2} \bar{\Phi}_{2}+\Phi_{3} \bar{\Phi}_{3}\right)^{\frac{3}{2}}$ up to leading order at "the IR fixed point" but along the flow around the IR, in general, the Kahler potential is given by (4.2). For the relevant work on $A d S S_{5} \times \mathbf{S}^{5}$ compactification with D3-branes, see the section 2.5 of 6] for example.

